We present an effective implementation of the PRIME+PROBE side-channel attack against the lastlevel cache. We measure the capacity of the covert channel the attack creates and demonstrate a cross-core, cross-VM attack on multiple versions of GnuPG. Our technique achieves a high attack resolution without relying on weaknesses in the OS or virtual machine monitor or on sharing memory between attacker and victim.
We propose and experimentally demonstrate a temporal differentiator in optical field based on a silicon microring resonator with a radius of 40 microm. The microring resonator operates near the critical coupling region, and can take the first order derivative of the optical field. It features compact size thus is suitable for integration with silicon-on-insulator (SOI) based optical and electronic devices. The performance of this optical differentiator is tested using signals with typical shapes such as Gaussian, sinusoidal and square-like pulses at data rates of 10 Gb/s and 5 Gb/s.
Correctly functioning caches have been shown to leak critical secrets like encryption keys, through various types of cache side-channel attacks. This nullifies the security provided by strong encryption and allows confidentiality breaches, impersonation attacks and fake services. Hence, future cache designs must consider security, ideally without degrading performance and power efficiency. We introduce a new classification of cache side channel attacks: contention based attacks and reuse based attacks. Previous secure cache designs target only contention based attacks, and we show that they cannot defend against reuse based attacks. We show the surprising insight that the fundamental demand fetch policy of a cache is a security vulnerability that causes the success of reuse based attacks. We propose a novel random fill cache architecture that replaces demand fetch with random cache fill within a configurable neighborhood window. We show that our random fill cache does not degrade performance, and in fact, improves the performance for some types of applications. We also show that it provides information-theoretic security against reuse based attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.