We present an effective implementation of the PRIME+PROBE side-channel attack against the lastlevel cache. We measure the capacity of the covert channel the attack creates and demonstrate a cross-core, cross-VM attack on multiple versions of GnuPG. Our technique achieves a high attack resolution without relying on weaknesses in the OS or virtual machine monitor or on sharing memory between attacker and victim.
Software cache-based side channel attacks are a serious new class of threats for computers. Unlike physical side channel attacks that mostly target embedded cryptographic devices, cache-based side channel attacks can also undermine general purpose systems. The attacks are easy to perform, effective on most platforms, and do not require special instruments or excessive computation power. In recently demonstrated attacks on software implementations of ciphers like AES and RSA, the full key can be recovered by an unprivileged user program performing simple timing measurements based on cache misses.
We first analyze these attacks, identifying cache interference as the root cause of these attacks. We identify two basic mitigation approaches: the partition-based approach eliminates cache interference whereas the randomization-based approach randomizes cache interference so that zero information can be inferred. We present new security-aware cache designs, the Partition-Locked cache (PLcache) and Random Permutation cache (RPcache), analyze and prove their security, and evaluate their performance. Our results show that our new cache designs with built-in security can defend against cache-based side channel attacks in general-rather than only specific attacks on a given cryptographic algorithm-with very little performance degradation and hardware cost.
We present Bastion, a new hardware-software architecture for protecting security-critical software modules in an untrusted software stack. Our architecture is composed of enhanced microprocessor hardware and enhanced hypervisor software. Each trusted software module is provided with a secure, fine-grained memory compartment and its own secure persistent storage area. Bastion is the first architecture to provide direct hardware protection of the hypervisor from both software and physical attacks, before employing the hypervisor to provide the same protection to security-critical OS and application modules. Our implementation demonstrates the feasibility of bypassing an untrusted commodity OS to provide application security and shows better security with higher performance when compared to the Trusted Platform Module (TPM), the current industry state-of-the-art security chip. We provide a proof-ofconcept implementation on the OpenSPARC platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.