Software cache-based side channel attacks are a serious new class of threats for computers. Unlike physical side channel attacks that mostly target embedded cryptographic devices, cache-based side channel attacks can also undermine general purpose systems. The attacks are easy to perform, effective on most platforms, and do not require special instruments or excessive computation power. In recently demonstrated attacks on software implementations of ciphers like AES and RSA, the full key can be recovered by an unprivileged user program performing simple timing measurements based on cache misses.
We first analyze these attacks, identifying cache interference as the root cause of these attacks. We identify two basic mitigation approaches: the partition-based approach eliminates cache interference whereas the randomization-based approach randomizes cache interference so that zero information can be inferred. We present new security-aware cache designs, the Partition-Locked cache (PLcache) and Random Permutation cache (RPcache), analyze and prove their security, and evaluate their performance. Our results show that our new cache designs with built-in security can defend against cache-based side channel attacks in general-rather than only specific attacks on a given cryptographic algorithm-with very little performance degradation and hardware cost.
We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at -7, 1 and 10 DAS of culm gall development were analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield of this crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.