Brain-computer interfaces (BCIs) provide humans a new communication channel by encoding and decoding brain activities. Steady-state visual evoked potential (SSVEP)-based BCI stands out among many BCI paradigms because of its non-invasiveness, little user training, and high information transfer rate (ITR). However, the use of conductive gel and bulky hardware in the traditional Electroencephalogram (EEG) method hinder the application of SSVEP-based BCIs. Besides, continuous visual stimulation in long time use will lead to visual fatigue and pose a new challenge to the practical application. This study provides an open dataset, which is collected based on a wearable SSVEP-based BCI system, and comprehensively compares the SSVEP data obtained by wet and dry electrodes. The dataset consists of 8-channel EEG data from 102 healthy subjects performing a 12-target SSVEP-based BCI task. For each subject, 10 consecutive blocks were recorded using wet and dry electrodes, respectively. The dataset can be used to investigate the performance of wet and dry electrodes in SSVEP-based BCIs. Besides, the dataset provides sufficient data for developing new target identification algorithms to improve the performance of wearable SSVEP-based BCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.