The pilot studies suggested that the proposed BCI speller could achieve a better and more stable system performance compared with the conventional P300 speller, and it is promising for achieving quick spelling in stimulus-driven BCI applications.
This study proposes a novel hybrid brain-computer interface (BCI) approach for increasing the spelling speed. In this approach, the P300 and steady-state visually evoked potential (SSVEP) detection mechanisms are devised and integrated so that the two brain signals can be used for spelling simultaneously. Specifically, the target item is identified by 2-D coordinates that are realized by the two brain patterns. The subarea/location and row/column speedy spelling paradigms were designed based on this approach. The results obtained for 14 healthy subjects demonstrate that the average online practical information transfer rate, including the time of break between selections and error correcting, achieved using our approach was 53.06 bits/min. The pilot studies suggest that our BCI approach could achieve higher spelling speed compared with the conventional P300 and SSVEP spellers.
An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1∶290 participants; group 2∶56 participants) were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1∶98.4%; group 2∶96.4%). The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other.
Increasingly more neuroimaging studies have shown that the complex symptoms of schizophrenia are linked to disrupted neural circuits and dysconnectivity of intrinsic connectivity networks. Previous studies have assumed temporal stationarity of resting-state functional connectivity, whereas temporal dynamics have rarely been explored. Here, we utilized resting-state functional MRI with a sliding window approach to measure the amplitude of low-frequency fluctuations (ALFFs) in functional connectivity in 24 patients with schizophrenia and 25 healthy controls. We found that there were significant differences in the ALFFs of specific connections, the majority of which were located between the intrinsic connectivity networks. Importantly, the experimental results of a multivariate pattern analysis of these ALFF measures showed that 81.3% (P<0.0009) of the participants were correctly classified as either schizophrenic patients or healthy controls by leave-one-out cross-validation. Our results show significant abnormality in the dynamics of internetwork functional connectivity in schizophrenia, which contributes toward the characterization and differentiation of schizophrenic patients, and may be used as a potential biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.