Over recent years, online purchase platforms of fruits are increasingly emerged to advance the e-commerce development and improve quality of human life. Unfortunately, we empirically observed that a lot of enterprises selling fruits online have suffered from bankruptcy due to a lot of complicated factors, such as inefficient logistics, low acceptance of online platforms, and financial risks. One of the root causes responsible for such an unanticipated phenomenon is related to the purchase intention, which motivates us to investigate what are the dominant factors affecting the online purchase intention of fruits. The results can be of great significance to the development of fruit e-commerce enterprises in online marketing. Based on the technology acceptance model (TAM) and perceived risk theory (PRT), this research developed an integrated theoretical model to explore the influential factors underlying consumers' intention to purchase fruits online. A web-based survey of 344 consumers with ages below 30 was used to test the hypotheses in our theoretical model. Through sample collection with questionnaires, a structural equation model is developed to compute the coupling relationship between influential factors and purchase intention. The results reveal that fruit quality and price are dominantly affecting the willingness of consumers to purchase fruit. Surprisingly, we found that e-commerce platforms, information quality, and perceived risk are less significant. Finally, some specific suggestions are recommended for fruit e-commerce enterprises in devising effective marketing strategies.
Salt-inducible kinase (SIK), which belongs to the sucrose non-fermenting 1/AMP-activated protein kinase family, was first discovered in the adrenal cortex of a rat on a high-salt diet. As an isoform of the SIK family, SIK2 modulates various biological functions and acts as a signal transmitter in various pathways. Compared with that in adjacent normal tissues, the expression of SIK2 is significantly higher in multiple types of tumors, which indicates its pivotal effect in oncogenesis. Studies on SIK2 have recently underlined its role in several signaling pathways, including the PI3K-Akt-mTOR pathway, the Hippo-YAP pathway, the LKB1-HDAC axis, and the cAMP-PKA axis. Moreover, a few small-molecule SIK2 inhibitors have been found to be able to rescue the oncogenicity of SIK2 during tumor development and reverse its abnormal activation of downstream pathways. In this mini-review, we discuss the results of in vivo and in vitro studies regarding the SIK2 mechanism in different signaling pathways, particularly their regulation of cancer cells. This work may provide new ideas for targeting SIK2 as a novel therapeutic strategy in tumor therapy.
Background Radiotherapy resistance is a major obstacle in the treatment of oesophageal squamous cell carcinoma (OSCC). Hypoxia is a critical cause of radioresistance. However, the communication between hypoxic cells and aerobic cells via exosomes during the transfer of radiation resistance remains unclear. Methods Exo-miR-340-5p levels were analysed by RNA-seq and qRT-PCR. We co-cultured OSCC cells with isolated normoxic and hypoxic exosomes to study their impact on radiosensitivity. We used a specific exo-miR-340-5p mimic and knock-down retrovirus to explore the role of this miRNA in the transfer of radioresistance from hypoxic to normoxic cells. Dual-luciferase reporter and RIP assays were used to verify KLF10 as a putative target of miR-340-5p. Several in vitro assays were conducted and xenograft models were established to investigate the effect of exo-miR-340-5p on OSCC radiosensitivity. The plasma exo-miR-340-5p levels in OSCC patients were analysed to study the clinical value of this parameter. Results Hypoxic exosomes alleviated radiation-induced apoptosis and accelerated DNA damage repair. miR-340-5p was highly expressed in hypoxic exosomes and was transferred into normoxic cells, where it induced radioresistance. Overexpression of miR-340-5p in normoxic OSCC cells mimicked the radioresistance of cells co-cultured with hypoxic exosomes. Knockdown of miR-340-5p in hypoxic exosomes reversed the radioresistance effect, indicating that exo-miR-340-5p is critical for hypoxic EV-transferred radioresistance. KLF10 was identified as the direct target of miR-340-5p. Moreover, metformin was found to increase the expression of KLF10 and enhance the radiosensitivity of OSCC. Higher levels of miR-340-5p in the plasma exosomes from OSCC patients are related to a poorer radiotherapy response and prognosis. Conclusions Hypoxic tumour cell-derived exosomal miR-340-5p confers radioresistance in OSCC by targeting KLF10/UVRAG, suggesting that miR-340-5p could be a potential biomarker and therapeutic target for the enhancement of radiosensitivity in OSCC. Metformin can increase KLF10 expression, which ameliorates the radioresistance induced by exo-miR-340-5p transfer. Therefore, metformin could be further investigated as a therapeutic option for the treatment of OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.