Patients with gastric ulcer (GU) have a significantly higher risk of developing gastric cancer (GC), especially within 2 years after diagnosis. The main way to improve the prognosis of GC is to predict the tumorigenesis and metastasis in the early stage. The objective of this study was to demonstrate the ability of human plasma amino acid metabolic profile for discriminating GC and GU. In this study, we first used liquid chromatography-tandem mass spectrometry technique to characterize the plasma amino acid metabolism in GC and GU patients. Plasma samples were collected from 84 GC patients and 82 GU patients, and 22 amino acids were detected in each patient. Partial least squares-discriminant analysis model was performed to analyze the data of these amino acids. We observed seven differential amino acids between GC and GU. A regression analysis model was established using these seven amino acids. Finally, a panel of five differential amino acids, including glutamine, ornithine, histidine, arginine and tryptophan, was identified for discriminating GC and GU with good specificity and sensitivity. The receiver operating characteristic curve was used to evaluate diagnostic ability of the regression model and area under the curve was 0.922. In conclusion, this study demonstrated the potential values of plasma amino acid metabolic profile and metabolomic analysis technique in assisting diagnosis of GC. More studies are needed to highlight the theoretical strengths of metabolomics to understand the potential metabolic mechanisms in GC. © 2018 IUBMB Life, 70(6):553-562, 2018.
BackgroundHigh mobility group-box 3 (HMGB3) has been shown to affect tumor initiation and progression. This research aimed to investigate the role of HMGB3 in gastric cancer (GC) cell proliferation, migration, invasion, chemoresistance, and its potential molecular mechanisms.Material/MethodsGC MGC803 and BGC823 cells were transfected with siRNA targeting the HMGB3 gene. The expressions of HMGB3 protein in MGC803 and BGC823 cells after transfection were detected by Western blot assays. We detected cell proliferation and cell cycle by MTT and flow cytometry assay. Cell migration and invasion were determined by wound scratch and transwell assay. MGC803 and BGC823 cells were treated with various concentrations of oxaliplatin, cisplatin, and paclitaxel. After 24 hours of drug exposure, we performed MTT assays to investigate chemoresistance in both groups. Western blot assays were used to detect related proteins expression.ResultsSilencing of HMGB3 inhibited cell proliferation and induced G0/G1 phase arrest of GC cells partly via modulating p53 and p21 pathways, and downregulating Bcl-2/Bax ratio. RNA interference of HMGB3 inhibited cell invasion and migration by downregulating MMP2 and MMP9. Silencing of HMGB3 enhanced sensitive to cisplatin and paclitaxel, and reduced sensitive to oxaliplatin.ConclusionsThese findings suggest the importance of HMGB3 in the regulation of growth, migration, and apoptosis of GC, improve our understanding of the mechanisms of GC pathogenesis, and may promote the development of novel targeted therapies.
SummaryBreast cancer (BC) is the most commonly diagnosed cancer in women worldwide. Arginine is a semiessential amino acid in humans and is essential for several biological pathways in malignant and normal cells, such as ornithine and N1, N12-diacetylspermine (DiAcSpm). This study aimed to determine the role of arginine and these downstream molecules in BC. Plasma arginine, ornithine, and arginine-to-ornithine ratio (AOR) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples were measured by the colloid gold aggregation to test determination of urinary diAcSpm. A principal component analysis was performed to evaluate the results observed between breast tumor and control characteristics. Differences in individual metabolite concentrations between BC patients and controls were tested by receiver operating characteristics (ROC) analyses. Student's t tests were used to detect the differences between two groups of normally distributed variables, and Wilcoxon sign rank tests were performed for asymmetrically distributed variables. As we analyzed, BC patients had lower plasma arginine and arginine/ornithine level, and higher plasma ornithine and urinary DiAcSpm concentrations as compared with control patients (P 5 0.028, 0.020, 0.002, and 0.011, respectively). And the ROC curve was drawn and the area under the curve of the metabolites was calculated to be 0.659 (P 5 0.028), 0.645 (P 5 0.045), 0.7233 (P 5 0.002), 0.683 (P 5 0.011), respectively. In addition, our analysis showed that arginine concentrations and AOR had a positive correlation with ER status, while ornithine had a negative correlation with T stage (P 5 0.042, 0.083, 0.023, respectively). In conclusion, arginine and these downstream molecules were biomarkers for BC. More studies are needed to highlight the theoretical strengths. V C 2016 IUBMB Life, 68(10): [817][818][819][820][821][822] 2016
Arginine is one of the human nonessential amino acids critical for the growth of human cancers. The aim of this study is to investigate the variation of arginine between breast cancer (BC) patients and benign mammary gland disease (control) patients to determine its value in predicting the risk of BC. We also explore the associations between arginine levels and breast cancer subtypes. Preoperative blood samples were obtained from 267 patients (102 BC and 165 controls) in 2015. Plasma arginine values were determined for all preoperative blood samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyse differences in arginine levels between BC patients and control patients and the correlations between arginine and clinicopathologic parameters in BC. The arginine levels of BC patients were significantly lower than those of control patients (5.96 [3.76-12.47] vs. 12.54 [7.14-24.94], P = 0.000). The area under the curve (AUC) for arginine was 0.721 (95% CI, 0.660-0.782, P < 0.0001). The concentration of arginine was significantly different among different molecular BC subtypes (P = 0.030). Our results suggested that plasma arginine was associated with breast cancer molecular subtypes. © 2016 IUBMB Life, 68(12):980-984, 2016.
It is noteworthy that colon cancer is the fourth place in new cases and the fifth in mortalities according to global cancer statistics 2018. Tumorigenesis displays specific correlation with metabolic alterations. A variety of metabolites, including ornithine (Orn), are related to colon cancer according to sources of disease metabolic information retrieval in human metabolome database. The metabolic regulation of Orn pathway is a key link in the survival of cancer cells. In this study, the plasma Orn levels in colon cancer patients and healthy participants were measured by liquid chromatography tandem mass spectrometry, and the metabolic disturbances of Orn in colon cancer were identified. Based on exploring the pathway structure of Orn metabolism via MetaboAnalyst and Kyoto Encyclopedia of Genes and Genomes database, we found that the upstream and downstream metabolites included arginine (Arg) and N1, N12-diacetylspermine (DiAcSpm). We observed that the Arg-Orn-DiAcSpm metabolic pathway was up-regulated in colon cancer through pathway analysis. We used multivariate data modelling to build a regression diagnosis model based on the three metabolites for colon cancer, and the diagnosis capability of this model was analyzed via receiver operating characteristic curve. This study provides a theoretical basis for further feature description of tumor metabolic pathway, which may lead to discover new therapeutic targets and drugs against colon cancer. Multivariate data modelling is expected to be a novel technology for developing noninvasive screening tool of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.