The three-dimensional (3D) perception of autonomous vehicles is crucial for localization and analysis of the driving environment, while it involves massive computing resources for deep learning, which can't be provided by vehiclemounted devices. This requires the use of seamless, reliable, and efficient massive connections provided by the 6G network for computing in the cloud. In this paper, we propose a novel deep learning framework with 6G enabled transport system for joint optimization of depth and ego-motion estimation, which is an important task in 3D perception for autonomous driving. A novel loss based on feature map and quadtree is proposed, which uses feature value loss with quadtree coding instead of photometric loss to merge the feature information at the texture-less region. Besides, we also propose a novel multi-level V-shaped residual network to estimate the depths of the image, which combines the advantages of V-shaped network and residual network, and solves the problem of poor feature extraction results that may be caused by the simple fusion of low-level and high-level features. Lastly, to alleviate the influence of image noise on pose estimation, we propose a number of parallel sub-networks that use RGB image and its feature map as the input of the network. Experimental results show that our method significantly improves the quality of the depth map and the localization accuracy and achieves the state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.