We propose a novel algorithm to detect visual saliency from video signals by combining both spatial and temporal information and statistical uncertainty measures. The main novelty of the proposed method is twofold. First, separate spatial and temporal saliency maps are generated, where the computation of temporal saliency incorporates a recent psychological study of human visual speed perception. Second, the spatial and temporal saliency maps are merged into one using a spatiotemporally adaptive entropy-based uncertainty weighting approach. The spatial uncertainty weighing incorporates the characteristics of proximity and continuity of spatial saliency, while the temporal uncertainty weighting takes into account the variations of background motion and local contrast. Experimental results show that the proposed spatiotemporal uncertainty weighting algorithm significantly outperforms state-of-the-art video saliency detection models.
Make and model recognition (MMR) of vehicles plays an important role in automatic vision-based systems. This paper proposes a novel deep learning approach for MMR using the SqueezeNet architecture. The frontal views of vehicle images are first extracted and fed into a deep network for training and testing. The SqueezeNet architecture with bypass connections between the Fire modules, a variant of the vanilla SqueezeNet, is employed for this study, which makes our MMR system more efficient. The experimental results on our collected large-scale vehicle datasets indicate that the proposed model achieves 96.3% recognition rate at the rank-1 level with an economical time slice of 108.8 ms. For inference tasks, the deployed deep model requires less than 5 MB of space and thus has a great viability in real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.