Phthalates are typical air pollutants in vehicular environment since numerous synthetic materials that might contain phthalates are widely used to fabricate vehicle interiors (e.g., seat cushions, floor mats and dashboards). Hitherto, the importance of phthalate pollution in vehicular environment is not well‐recognized because people spend only a small portion (around 8%) of their time in vehicles. In this study, the mass fractions of six phthalates in nine materials commonly used in Chinese vehicles (floor mats and seat cushions) were measured. Two phthalates, di‐n‐butyl phthalate (DnBP) and di‐2‐ethylhexyl phthalate (DEHP), were identified in most materials (the other phthalates were not detected). The emission characteristics of DnBP and DEHP from these materials were further investigated. The measured emission parameters were used as input for a mass‐transfer model to estimate DnBP and DEHP concentrations in cabin air. Finally, the ratios between human exposures (via inhalation and dermal absorption from the gas phase) in vehicular environment and the total exposures in typical indoor environments (e.g., residences and offices) were estimated to be up to 110% and 20% for DnBP and DEHP, respectively. Based on these results, the vehicular environment might be a considerable site for human exposure to airborne phthalates.
Six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), and di(n-octyl) phthalate (DOP) in settled dust on different indoor surfaces were measured in 30 university dormitories. A Monte Carlo simulation was used to estimate college students’ exposure via inhalation, non-dietary ingestion, and dermal absorption based on measured concentrations. The detection frequencies for targeted phthalates were more than 80% except for DEP (roughly 70%). DEHP was the most prevalent compound in the dust samples, followed by DnBP, DOP, and BBzP. Statistical analysis suggested that phthalate levels were higher in bedside dust than that collected from table surfaces, indicating a nonuniform distribution of dust-phase phthalates in the sleep environment. The simulation showed that the median DMP daily intake was 0.81 μg/kg/day, which was the greatest of the targeted phthalates. For the total exposures to all phthalates, the mean contribution of exposures during the daytime and sleeping time was 54% and 46%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.