This paper considers a Hilbert marginal spectrum-based approach to health monitoring of active suspension bridge hangers. The paper proposes to takes advantage of the presence of active cables and use them as an excitation mean of the bridge, while they are used for active damping. The Hilbert–Huang transform is used to calculate the Hilbert marginal spectrum and establish a damage index for each hanger of the suspension bridge. The paper aims to investigate the method experimentally, through a series of damage scenarios, on a laboratory suspension bridge mock-up equipped with four active cables; each active cable is made of a displacement actuator collocated with a force sensor. Different locations and levels of damage severity are implemented. For the first time, the investigation demonstrates experimentally the effectiveness of the technique, as well as its limitations, to detect and locate the damage in hangers of a suspension bridge.
This paper proposes a synthetic approach to design and implement a two-degree of freedom tuned mass damper (2DOFs TMD), aimed at damping bending and torsional modes of bridge decks (it can also be applied to other types of bridges like cable-stayed bridges to realize the energy dissipation). For verifying the effectiveness of the concept model, we cast the parameter optimization of the 2DOFs TMDs conceptual model as a control problem with decentralized static output feedback for minimizing the response of the bridge deck. For designing the expected modes of the 2DOFs TMDs, the graphical approach was introduced to arrange flexible beams properly according to the exact constraints. Based on the optimized frequency ratios, the dimensions of 2DOF TMDs are determined by the compliance matrix method. Finally, the mitigation effect was illustrated and verified by an experimental test on the suspension bridge mock-up. The results showed that the 2DOFs TMD is an effective structural response mitigation device used to mitigate the response of suspension bridges. It was also observed that based on the proposed synthetic approach, 2DOFs TMD parameters can be effectively designed to realize the target modes control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.