The prevalence of ventilated façade systems is not only due to their aesthetic properties but also due to the fact they provide mechanical and acoustic protection for the façade and reduce the energy demand of the building. However, it is essential to mention that the point thermal bridges of the fastening system with brackets and anchors are often neglected during simplified energy performance calculations and practical design tasks. The reason practitioners do not consider the brackets in the calculation is the lack of standards for the simplified calculation of point thermal transmittances, or there being no comprehensive, manufacturer-independent thermal bridge catalogue available. This study aims to evaluate the point thermal transmittances created by the brackets and anchors of the ventilated façade claddings by using 3D numerical thermal modelling. A broad point thermal bridge catalogue was created, considering multiple factors of the ventilated facades. The FEM-based results show that thermal breaks/isolators could reduce the point thermal transmittances by only 2 to 28%, depending on the material of the brackets and the isolators. The brackets’ material and geometrical properties/parameters could cause up to 70% of difference between corrected and uncorrected thermal transmittance values, as well as significant differences between the results if the brackets were applied to different kinds of masonry walls or reinforced concrete walls.
In this study, a BIM-based building physics modelling of a ventilated façade of a multistorey residential building was made to obtain the thermal performance of the construction. The workflow is performed in an open BIM environment using Archicad to create the model and Comsol Multiphysics for performing the numerical simulations. After creating a suitable workflow and performing the finite element simulations, we determined the thermal impact of the supporting brackets and the dowels securing the thermal insulation, respectively. We also calculated the thermal performance using simplified methods according to standards to evaluate the BIM-based results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.