On-site greywater recycling is one of the main ways of preserving water resources in urban or arid areas. This study aims to formulate model synthetic greywater (SGW) in order to evaluate and compare the performances of several recycling processes on a reproducible effluent. The formulated SGW is composed of septic effluent to provide indicators of faecal contamination, and technical quality chemical products to simulate organic pollution of greywater. To ensure that the SGW developed is representative of household greywater, its analysis was compared to real greywater collected and analysed (RGWs) and to real greywater mentioned in previous publications (RGW(L)). The performance of a direct nanofiltration process with a concentration factor of 87.5% at 35 bar was then tested on both real greywater and SGW. The laboratory experimental results are promising: fluxes and retention rates were high, and similar for both effluents. The permeation flux was higher than 50 L h(-1) m(-2). Retentions greater than 97% for biochemical oxygen demand for 5 days (BOD5) and 92% for anionic surfactants were observed. No Enterococcus were detected in the two permeates. These results confirm that the model SGW developed in this study shows the same behaviour as real greywater when recycled. Thus, the use of this SGW developed in this study was validated for the evaluation of membrane efficiency to treat greywater. This new tool will be a real asset for future studies.
Greywater reuse inside buildings is a possible way to preserve water resources and face up to water scarcity. This study is focused on a technical-economic analysis of greywater treatment by a direct nanofiltration (NF) process or by a submerged membrane bioreactor (SMBR) for on-site recycling. The aim of this paper is to analyse the cost of recycled water for two different configurations (50 and 500 inhabitants) in order to demonstrate the relevance of the implementation of membrane processes for greywater recycling, depending on the production capacity of the equipment and the price of drinking water. The first step was to define a method to access the description of the cost of producing recycled water. The direct costs were defined as a sum of fixed costs due to equipment, maintenance and depreciation, and variable costs generated by chemical products and electricity consumptions. They were estimated from an experimental approach and from data found in literature, enabling operating conditions for greywater recycling to be determined. The cost of treated water by a SMBR unit with a processing capacity of 500 persons is close to 4.40 euros m(-3), while the cost is 4.81 euros m(-3) with a NF process running in the same conditions. These costs are similar to the price of drinking water in some European countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.