Phosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLT 1 R)-interacting proteins, we identified protein tyrosine phosphatase « (PTP«) in a yeast two-hybrid assay. Since both proteins are closely linked to asthma, we further investigated their association. Using a human embryonic kidney cell line 293 (HEK-293) cell line stably transfected with the receptor (HEK-LT1), as well as human primary monocytes, we found that PTP« colocalized with CysLT 1 R in both resting and leukotriene D4 (LTD 4 )stimulated cells. Cotransfection of HEK-LT1 with PTP« had no effect on CysLT 1 R expression or LTD 4 -induced internalization, but it inhibited LTD 4 -induced CXC chemokine 8 (CXCL8) promoter transactivation, protein expression, and secretion. Moreover, reduced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), but not of p38 or c-Jun-Nterminal kinase 1 or 2 mitogen-activated protein kinases (MAPKs), was observed upon LTD 4 stimulation of HEK-LT1 coexpressing cytosolic (cyt-) PTP«, but not receptor (R) PTP«. The increased interaction of cyt-PTP« and ERK1/2 after LTD 4 stimulation was shown by coimmunoprecipitation. In addition, enhanced ERK1/2 phosphorylation and CXCL8 secretion were found in LTD 4 -stimulated human monocytes transfected with PTP«-specific siRNAs, adding support to a regulatory/inhibitory role of PTP« in CysLT 1 R signaling. Given that the prevalence of severe asthma is increasing, the identification of PTP« as a new potential therapeutic target may be of interest.
Ca(2+) is a highly versatile second messenger that plays a key role in the regulation of many cell processes. This versatility resides in the fact that different signals can be encoded spatio-temporally by varying the frequency and amplitude of the Ca(2+) response. A typical example of an organized Ca(2+) signal is a Ca(2+) wave initiated in a given area of a cell that propagates throughout the entire cell or within a specific subcellular region. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3) R) is responsible for the release of Ca(2+) from the endoplasmic reticulum. IP(3) R activity can be directly modulated in many ways, including by interacting molecules, proteins, and kinases such as PKA, PKC, and mTOR. In the present study, we used a videomicroscopic approach to measure the velocity of Ca(2+) waves in bovine aortic endothelial cells under various conditions that affect IP(3) R function. The velocity of the Ca(2+) waves increased with the intensity of the stimulus while extracellular Ca(2+) had no significant impact on wave velocity. Forskolin increased the velocity of IP(3) R-dependent Ca(2+) waves whereas PMA and rapamycin decreased the velocity. We used scatter plots and Pearson's correlation test to visualize and quantify the relationship between the Ca(2+) peak amplitude and the velocity of Ca(2+) waves. The velocity of IP(3) R-dependent Ca(2+) waves poorly correlated with the amplitude of the Ca(2+) response elicited by agonists in all the conditions evaluated, indicating that the velocity depended on the activation state of IP(3) R, which can be modulated in many ways.
Background An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses. Results Here, we report that PAF stimulated the phosphatase activity of both the 45 and 48 kDa isoforms of the protein tyrosine phosphatase non-receptor type 2 (PTPN2). However, we found that only the 48 kDa PTPN2 isoform has a role in PAFR-induced signal transduction, leading to activation of the IL-6 promoter. In luciferase reporter assays, expression of the 48 kDa, but not the 45 kDa, PTPN2 isoform increased human IL-6 (hIL-6) promoter activity by 40% after PAF stimulation of HEK-293 cells, stably transfected with PAFR (HEK-PAFR). Our results suggest that the differential localization of the PTPN2 isoforms and the differences in PAF-induced phosphatase activation may contribute to the divergent modulation of PAF-induced IL-6 promoter activation. The involvement of PTPN2 in PAF-induced IL-6 expression was confirmed in immature Mo-DCs (iMo-DCs), using siRNAs targeting the two isoforms of PTPN2, where siRNAs against the 48 kDa PTPN2 significantly inhibited PAF-stimulated IL-6 mRNA expression. Pharmacological inhibition of several signaling pathways suggested a role for PTPN2 in early signaling events. Results obtained by Western blot confirmed that PTPN2 increased the activation of the PI3K/Akt pathway via the modulation of protein kinase D (PKD) activity. WT PKD expression counteracted the effect of PTPN2 on PAF-induced IL-6 promoter transactivation and phosphorylation of Akt. Using siRNAs targeting the individual isoforms of PTPN2, we confirmed that these pathways were also active in iMo-DCs. Conclusion Taken together, our data suggest that PTPN2, in an isoform-specific manner, could be involved in the positive regulation of PI3K/Akt activation, via the modulation of PKD activity, allowing for the maximal induction of PAF-stimulated IL-6 mRNA expression. Electronic supplementary material The online version of this article (10.1186/s13578-019-0316-9) contains supplementary material, which is available to authorized users.
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.