This paper is devoted to the location of public facilities in a metric space. Selfish agents are located in this metric space, and their aim is to minimize their own cost, which is the distance from their location to the nearest facility. A central authority has to locate the facilities in the space, but she is ignorant of the true locations of the agents. The agents will therefore report their locations, but they may lie if they have an incentive to do it. We consider two social costs in this paper: the sum of the distances of the agents to their nearest facility, or the maximal distance of an agent to her nearest facility. We are interested in designing strategy-proof mechanisms that have a small approximation ratio for the considered social cost. A mechanism is strategy-proof if no agent has an incentive to report false information. In this paper, we design strategyproof mechanisms to locate n − 1 facilities for n agents. We study this problem in the general metric and in the tree metric spaces. We provide lower and upper bounds on the approximation ratio of deterministic and randomized strategy-proof mechanisms.
This paper deals with problems which fall into the domain of selfish scheduling: a protocol is in charge of building a schedule for a set of tasks without directly knowing their length. The protocol gets these informations from agents who control the tasks. The aim of each agent is to minimize the completion time of her task while the protocol tries to minimize the maximal completion time. When an agent reports the length of her task, she is aware of what the others bid and also of the protocol's algorithm. Then, an agent can bid a false value in order to optimize her individual objective function. With erroneous information, even the most efficient algorithm may produce unreasonable solutions. An algorithm is truthful if it prevents the selfish agents from lying about the length of their task. The central question in this paper is: "How efficient a truthful algorithm can be? We study the problem of scheduling selfish tasks on parallel identical machines. This question has been raised by Christodoulou et al [8] in a distributed system, but it is also relevant in centrally controlled systems. Without considering side payments, our goal is to give a picture of the performance under the condition of truthfulness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.