Diabetes mellitus in early pregnancy causes birth defects, including neural tube defects (NTDs). Hyperglycemia increases production of nitric oxide (NO) through NO synthase 2 (Nos2) and reactive oxygen species (ROS), generating nitrosative and oxidative stress conditions in the embryo. The present study aimed to target nitrosative stress using a naturally occurring Nos2 inhibitor, quercetin, to prevent NTDs in the embryos of diabetic mice. Daily administration of quercetin to diabetic pregnant mice during the hyperglycemia-susceptible period of organogenesis significantly reduced NTDs and cell apoptosis in the embryos, compared with those of vehicle-treated diabetic pregnant mice. Using HPLC-coupled ESI-MS/MS, quercetin metabolites, including methylated and sulfonylated derivatives, were detected in the conceptuses. The methylated metabolite, 3-O-methylquercetin, was shown to reduce ROS level in embryonic stem cells cultured in high glucose. Quercetin treatment decreased the levels of Nos2 expression, protein nitrosylation, and protein nitration, alleviating nitrosative stress. Quercetin increased the expression of superoxide dismutase 1 and 2, and reduced the levels of oxidative stress markers. Expression of genes of redox regulating enzymes and DNA damage repair factors was upregulated. Our study demonstrates that quercetin ameliorates intracellular stresses, regulates gene expression, and reduces embryonic malformations in diabetic pregnancy.
Quercetin-3-glucoside reduces the neural tube defects rate in the embryos of diabetic dams. Quercetin-3-glucoside suppresses nitric oxide synthase 2 and increases superoxide dismutase 1 expression, leading to alleviation of nitrosative, oxidative, and endoplasmic reticulum stress conditions. Quercetin-3-glucoside may regulate the expression of nitric oxide synthase 2 via modulating the nuclear factor-κB transcription regulation system. Quercetin-3-glucoside, a naturally occurring polyphenol that has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies.
Suaeda physophora Pall. is a kind of desert plant mostly growing in saline habitats in Xinjiang Uygur Autonomous Region. In order to have a better utilization of halophytes, a screening for ACE inhibitors from halophytes growing in Xinjiang was carried out. The result showed that the 70% EtOH extract and n-BuOH extract of S. physophora Pall. possessed significant ACE inhibitory activities. So we focused on its biochemical constituents firstly. One new quinazoline alkaloid, namely Suaedine (1), along with six known compounds (2-7) was isolated from the aerial parts of S. physophora Pall. The structure of the new quinazoline alkaloid was established by one-and two-dimensional nuclear magnetic resonance, optical rotation and mass spectrometry analysis. The flavonoid compounds (2-4) and phenolic compound (5) exhibited significant ACE activities. It was the first time to focus on the chemical constituents and bioactivities of this plant.
Though miRNAs have been reported to regulate bovine myoblast proliferation, but many miRNAs still need to be further explored. Specifically, miR-152 is a highly expressed miRNA in cattle skeletal muscle tissues, but its function in skeletal muscle development is unknown. Herein, we aimed to investigate the role of miR-152 in regulating bovine myoblast proliferation. Functionally, RT-qPCR, Western blotting, EdU assay, and flow cytometry detection results showed that miR-152 inhibited bovine myoblast proliferation. Mechanistically, we demonstrated transcription factor KLF6 was a target gene of miR-152 by means of bioinformatics software prediction and dual-luciferase report analysis, which had been demonstrated to be favorable for myoblast proliferation. Collectively, our research suggested that miR-152 inhibits bovine myoblast proliferation via targeting KLF6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.