Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here we apply extrusion-based 3D cellular bioprinting to deliver rapid and high throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, 3D bioprinting enabled precise manipulation of biophysical properties including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitated the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production deliver improvements in throughput, quality control, scale and structure, facilitating
in vitro
and
in vivo
applications of stem cell-derived human kidney tissue.
Stem cell injections for the treatment of articular cartilage damage are a promising approach to achieve tissue regeneration. However, this method is encumbered by high cell apoptosis rates, low retention in the cartilage lesion, and inefficient chondrogenesis. Here, we have used a facile, very low cost-based microfluidic technique to create visible light-cured microgels composed of gelatin norbornene (GelNB) and a poly(ethylene glycol) (PEG) cross-linker. In addition, we have demonstrated that the process enables the rapid in situ microencapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs) under biocompatible microfluidic-processing conditions for long-term maintenance. The hBMSCs exhibited an unusually high degree of chondrogenesis in the GelNB microgels with chondro-inductive media, specifically toward the hyaline cartilage structure, with significant upregulation in type II collagen expression compared to the bulk hydrogel and "gold standard" pellet culture. Overall, we have demonstrated that these protein-based microgels can be engineered as promising therapeutic candidates for articular cartilage regeneration, with additional potential to be used in a variety of other applications in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.