<p>In this work, a Neuro-Fuzzy Controller network, called NFC that implements a Mamdani fuzzy inference system is proposed. This network includes neurons able to perform fundamental fuzzy operations. Connections between neurons are weighted through binary and real weights. Then a mixed binary-real Non dominated Sorting Genetic Algorithm II (NSGA II) is used to perform both accuracy and interpretability of the NFC by minimizing two objective functions; one objective relates to the number of rules, for compactness, while the second is the mean square error, for accuracy. In order to preserve interpretability of fuzzy rules during the optimization process, some constraints are imposed. The approach is tested on two control examples: a single input single output (SISO) system and a multivariable (MIMO) system.<strong></strong></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.