Metallic surface defect detection is critical to ensure the quality of industrial products. Recently, human-advanced surface defect detection algorithms have been proposed. Most of these algorithms rely on convolutional neural networks (CNN) and an anchoring scheme. However, a convolution unit only samples the input feature maps at fixed shapes and locations. Similarly, a set of anchors are uniformly predefined with fixed scales and shapes, which increases the difficulties of bounding box regression. Therefore, we propose an adaptive convolution and anchor network for metallic surface defect detection, named ACA-Net. Specifically, an adaptive convolution and anchor (ACA) module is proposed, which mainly consists of adaptive convolution and an adaptive anchor. Firstly, an adaptive convolution module (ACM) is designed, which adaptively determines the location and shape of each convolution unit. In addition, a multi-scale feature adaptive fusion (MFAF) is proposed, which is used in ACM to extract and integrate multi-scale features. Then, an adaptive anchor module (AAM) is proposed to yield more suitable anchor boxes by adaptively adjusting shapes. Extensive experiments on NEU-DET dataset and GC10 dataset validate the performance of the proposed approach. ACA-Net achieves 1.8% on NEU-DET dataset higher Average Precision (AP) than GA-RetinaNet. Furthermore, the proposed ACA module is also adopted in GA-Faster R-CNN, improving the AP by 1.2% on NEU-DET dataset.
Spiking neural networks (SNNs) have attracted considerable attention as third-generation artificial neural networks, known for their powerful, intelligent features and energy-efficiency advantages. These characteristics render them ideally suited for edge computing scenarios. Nevertheless, the current mapping schemes for deploying SNNs onto neuromorphic hardware face limitations such as extended execution times, low throughput, and insufficient consideration of energy consumption and connectivity, which undermine their suitability for edge computing applications. To address these challenges, we introduce EdgeMap, an optimized mapping toolchain specifically designed for deploying SNNs onto edge devices without compromising performance. EdgeMap consists of two main stages. The first stage involves partitioning the SNN graph into small neuron clusters based on the streaming graph partition algorithm, with the sizes of neuron clusters limited by the physical neuron cores. In the subsequent mapping stage, we adopt a multi-objective optimization algorithm specifically geared towards mitigating energy costs and communication costs for efficient deployment. EdgeMap—evaluated across four typical SNN applications—substantially outperforms other state-of-the-art mapping schemes. The performance improvements include a reduction in average latency by up to 19.8%, energy consumption by 57%, and communication cost by 58%. Moreover, EdgeMap exhibits an impressive enhancement in execution time by a factor of 1225.44×, alongside a throughput increase of up to 4.02×. These results highlight EdgeMap’s efficiency and effectiveness, emphasizing its utility for deploying SNN applications in edge computing scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.