Bacteriophages exhibit a vast spectrum of relatedness and there is increasing evidence of close genomic relationships independent of host genus. The variability in phage similarity at the nucleotide, amino acid, and gene content levels confounds attempts at quantifying phage relatedness, especially as more novel phages are isolated. This study describes three highly similar novel Arthrobacter globiformis phages–Powerpuff, Lego, and YesChef–which were assigned to Cluster AZ using a nucleotide-based clustering parameter. Phages in Cluster AZ, Microbacterium Cluster EH, and the former Microbacterium singleton Zeta1847 exhibited low nucleotide similarity. However, their gene content similarity was in excess of the recently adopted Microbacterium clustering parameter, which ultimately resulted in the reassignment of Zeta1847 to Cluster EH. This finding further highlights the importance of using multiple metrics to capture phage relatedness. Additionally, Clusters AZ and EH phages encode a shared integrase indicative of a lysogenic life cycle. In the first experimental verification of a Cluster AZ phage’s life cycle, we show that phage Powerpuff is a true temperate phage. It forms stable lysogens that exhibit immunity to superinfection by related phages, despite lacking identifiable repressors typically required for lysogenic maintenance and superinfection immunity. The ability of phage Powerpuff to undergo and maintain lysogeny suggests that other closely related phages may be temperate as well. Our findings provide additional evidence of significant shared phage genomic content spanning multiple actinobacterial host genera and demonstrate the continued need for verification and characterization of life cycles in newly isolated phages.
Bacteriophages exhibit a vast spectrum of relatedness and there is increasing evidence of close genomic relationships independent of host genus. The variability in phage similarity at the nucleotide, amino acid, and gene content levels confounds attempts at quantifying phage relatedness, especially as more novel phages are isolated. This study describes three highly similar novel Arthrobacter globiformis phages–Powerpuff, Lego, and YesChef–which were assigned to Cluster AZ using a nucleotide-based clustering parameter. Phages in Cluster AZ and Microbacterium Cluster EH, as well as the former Microbacterium singleton Zeta1847, exhibited low nucleotide similarity but gene content similarity in excess of the recently adopted Microbacterium clustering parameter, which resulted in the reassignment of Zeta1847 to Cluster EH. Additionally, while Clusters AZ and EH phages lack identifiable repressors or partitioning systems typically required for lysogeny, they encode a shared integrase indicative of a lysogenic life cycle. In the first experimental verification of a Cluster AZ phage’s life cycle, we show that phage Powerpuff is a true temperate phage and forms stable lysogens. Moreover, we provide evidence that Clusters AZ and EH phages exhibit similar genome architectures in addition to their shared integrases, suggesting that these phages may all be temperate and undergo an unknown lysogeny mechanism. Our findings further highlight the importance of using multiple metrics to capture phage relatedness and provide additional evidence of significant shared phage genomic content spanning multiple actinobacterial host genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.