In the photovoltaic system, the performance, efficiency, and generated power of the PV system are affected by changes in the environment, disturbances, and parameter variations, and this leads to a deviation from the operating maximum power point (MPP) of the PV system. Therefore, the main aim of this paper is to ensure the PV system operates at the maximum power point under the influence of exogenous disturbances and uncertainties, i.e., no matter how the irradiation, temperature, and load of the PV system change, by proposing a maximum power point tracking for the photovoltaic system (PV) based on the active disturbance rejection control (ADRC) paradigm. The proposed method provides better performance with excellent tracking for the MPP by controlling the duty cycle of the DC–DC buck converter. Moreover, comparison simulations have been performed between the proposed method and the linear ADRC (LADRC), conventional ADRC, and the improved ADRC (IADRC) to investigate the effectiveness of the proposed method. Finally, the simulation results validated the accuracy of the proposed method in tracking the desired value and disturbance/uncertainty attenuation with excellent response and minimum output performance index (OPI).
In actual industrial control, many objects have the characteristics of large lag and time-varying parameters, which makes it difficult for traditional PID control to obtain satisfactory control effects. Therefore, engineers need a control algorithm with a better control effect and a simple structure, and thus the internal model control is introduced into industrial process control. Internal model control has received a lot of attention in the control field because of its excellent control effect, and in ideal conditions, it can perfectly suppress external disturbances, and the output strictly tracks the input. On the basis of the internal model control, a two-degrees-of-freedom internal model control was developed. Compared with the conventional feedback control, the internal model control structure mainly embeds an internal model consistent with the control object in the control object, so the deviation between the internal model and the control object determines the quality of the control effect. In this paper, the internal model is changed to an adjustable parameter model, and the model parameters are adjusted in real time using the parameter adaptive algorithm, so that the model output error is as small as possible, or even zero. In order to solve the influence of interference on the system, compensation based on MRAC theory is used. In order to verify the feasibility of the algorithm, it was applied to the landing process control of fixed-wing Unmanned aerial vehicle) UAV and achieved satisfactory results.
This paper presents a novel extended state observer (ESO) approach for a class of plants with nonlinear dynamics. The proposed observer estimates both the state variables and the total disturbance, which includes both exogenous and endogenous disturbance. The study’s changes can be summarized by developing a sliding mode higher-order extended state observer with a higher-order augmented state and a nonlinear function for the estimation error correction terms (SMHOESO). By including multiple enhanced states, the proposed observer can monitor total disturbances asymptotically, with the second derivative of the total disturbance serving as an upper constraint on the estimation error. This feature improves the observer’s ability to estimate higher-order disturbances and uncertainty. To extend the concept of the linear extended state observer (LESO), a nonlinear function can modify the estimation error in such a way that the proposed observer can provide faster and more accurate estimations of the state and total disturbance. The proposed nonlinearity also reduces the chattering issue with LESOs. This research thoroughly examines and analyzes the proposed SMHOESO’s convergence using the Lyapunov technique. According to this analysis, the SMHOESO is asymptotically stable, and the estimation error can be significantly reduced under real-world conditions. In addition to the SMHOESO, a modified Active Disturbance Rejection Control (ADRC) scheme is built, which includes a nonlinear state error feedback (NLSEF) controller and a nonlinear tracking differentiator (TD). Several nonlinear models, including the Differential Drive Mobile Robot (DDMR), are numerically simulated, and the proposed SMHOESO is compared to several alternative types, demonstrating a significant reduction in controller energy, increased control signal smoothness, and accurate tracking of the reference signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.