Nowadays, there is a growing interest in the smart home system using Internet of Things. One of the important aspect in the smart home system is the security capability which can simply lock and unlock the door or the gate. In this paper, we proposed a face recognition security system using Raspberry Pi which can be connected to the smart home system. Eigenface was used the feature extraction, while Principal Component Analysis (PCA) was used as the classifier. The output of face recognition algorithm is then connected to the relay circuit, in which it will lock or unlock the magnetic lock placed at the door. Results showed the effectiveness of our proposed system, in which we obtain around 90% face recognition accuracy. We also proposed a hierarchical image processing approach to reduce the training or testing time while improving the recognition accuracy.
<p class="Abstract">Disease in palm oil sector is one of the major concerns because it affects the production and economy losses to Malaysia. Diseases appear as spots on the leaf and if not treated on time, cause the growth of the palm oil tree. This work presents the use of digital image processing technique for classification oil palm leaf disease sympthoms. Chimaera and Anthracnose is the most common symtoms infected the oil palm leaf in nursery stage. Here, support vector machine (SVM) acts as a classifier where there are four stages involved. The stages are image acquisition, image enhancement, clustering and classification. The classification shows that SVM achieves accuracy of 97% for Chimaera and 95% for Anthracnose.</p>
In this paper, a modification of PVD (Pixel value differencing) algorithm is used for Image Steganography in spatial domain. It is normalizing secret data value by encoding method to make the new pixel edge difference less among three neighbors (horizontal, vertical and diagonal) and embedding data only to less intensity pixel difference areas or regions. The proposed algorithm shows a good improvemernt for both color and gray-scale images compared to other algorithms. Color images performance are better than gray images. However, in this work the focus is mainly on gray images. The strenght of this scheme is that any random hidden/secret data do not make any shuttle differences to Steg-image compared to original image. The bit plane slicing is used to analyze the maximum payload that has been embeded into the cover image securely. The simulation results show that the proposed algorithm is performing better and showing great consistent results for PSNR, MSE values of any images, also against Steganalysis attack.
Edge detection is the first step in image recognition systems in a digital image processing. An effective way to resolve many information from an image such depth, curves and its surface is by analyzing its edges, because that can elucidate these characteristic when color, texture, shade or light changes slightly. Thiscan lead to misconception image or vision as it based on faulty method. This work presentsa new fuzzy logic method with an implemention. The objective of this method is to improve the edge detection task. The results are comparable to similar techniques in particular for medical images because it does not take the uncertain part into its account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.