2017
DOI: 10.11591/ijeei.v5i4.361
|View full text |Cite
|
Sign up to set email alerts
|

Development of Face Recognition on Raspberry Pi for Security Enhancement of Smart Home System

Abstract: Nowadays, there is a growing interest in the smart home system using Internet of Things. One of the important aspect in the smart home system is the security capability which can simply lock and unlock the door or the gate. In this paper, we proposed a face recognition security system using Raspberry Pi which can be connected to the smart home system. Eigenface was used the feature extraction, while Principal Component Analysis (PCA) was used as the classifier. The output of face recognition algorithm is then … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
3

Relationship

1
9

Authors

Journals

citations
Cited by 29 publications
(12 citation statements)
references
References 10 publications
0
9
0
3
Order By: Relevance
“…Perangkat seperti keamanan rumah pintar ini sangat diperlukan dalam kehidupan sehari-hari [3]. Salah satu aspek keamanan rumah pintar adalah kunci pintu rumah agar dapat membuka dan mengunci seclara otomatis [4].…”
Section: Pendahuluanunclassified
“…Perangkat seperti keamanan rumah pintar ini sangat diperlukan dalam kehidupan sehari-hari [3]. Salah satu aspek keamanan rumah pintar adalah kunci pintu rumah agar dapat membuka dan mengunci seclara otomatis [4].…”
Section: Pendahuluanunclassified
“…Este dispositivo ha sido utilizado en distintos proyectos tecnológicos y de desarrollo, tales como sistemas de seguridad basados en la detección de rostros [5], o sistemas de alarmas que envía videos y fotografías cuando un movimiento es detectado en el inmueble a proteger [6].…”
Section: Raspberry Piunclassified
“…The authors of [9] proposed a face recognition security system using Raspberry Pi which can be connected to the smart home system. Eigenface was used the feature extraction, while Principal Component Analysis (PCA) was used as the classifier.…”
Section: Related Workmentioning
confidence: 99%