Inhibitory control/regulation is critical to adapt behavior in accordance with changing environmental circumstances. Dysfunctional inhibitory regulation is ubiquitous in neurological and psychiatric populations. These populations exhibit dysfunction across psychological domains, including memory/thought, emotion/affect, and motor response. Although investigation examining inhibitory regulation within a single domain has begun outlining the basic neural mechanisms supporting regulation, it is unknown how the neural mechanisms of these domains interact. To investigate the organization of inhibitory neural networks within and across domains, we used neuroimaging to outline the functional and anatomical pathways that comprise inhibitory neural networks regulating cognitive, emotional, and motor processes. Networks were defined at the group level using an array of analyses to indicate their intrinsic pathway structure, which was subsequently assessed to determine how the pathways explained individual differences in behavior. Results reveal how neural networks underlying inhibitory regulation are organized both within and across domains, and indicate overlapping/common neural elements.
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a 3D graphical model of the human brain, and sections derived from the model, tools for exploring neuroanatomy were developed to encourage adaptive exploration. This is an instructional method which incorporates graphical exploration in the context of repeated testing and feedback. With this approach, 72 participants learned either sectional anatomy alone or whole anatomy followed by sectional anatomy. Sectional anatomy was explored either with perceptually continuous navigation through the sections or with discrete navigation (as in the use of an anatomical atlas). Learning was measured longitudinally to a high performance criterion. Subsequent tests examined transfer of learning to the interpretation of biomedical images and long-term retention. There were several clear results of this study. On initial exposure to neuroanatomy, whole anatomy was learned more efficiently than sectional anatomy. After whole anatomy was mastered, learners demonstrated high levels of transfer of learning to sectional anatomy and from sectional anatomy to the interpretation of complex biomedical images. Learning whole anatomy prior to learning sectional anatomy led to substantially fewer errors overall than learning sectional anatomy alone. Use of continuous or discrete navigation through sectional anatomy made little difference to measured outcomes. Efficient learning, good long-term retention, and successful transfer to the interpretation of biomedical images indicated that computer-based learning using adaptive exploration can be a valuable tool in instruction of neuroanatomy and similar disciplines.
The large volume of material to be learned in biomedical disciplines requires
optimizing the efficiency of instruction. In prior work with computer-based instruction of
neuroanatomy, it was relatively efficient for learners to master whole anatomy and then
transfer to learning sectional anatomy. It may, however, be more efficient to continuously
integrate learning of whole and sectional anatomy. A study of computer-based learning of
neuroanatomy was conducted to compare a basic transfer paradigm for learning whole and
sectional neuroanatomy with a method in which the two forms of representation were
interleaved (alternated). For all experimental groups, interactive computer programs
supported an approach to instruction called adaptive exploration. Each
learning trial consisted of time-limited exploration of neuroanatomy, self-timed testing,
and graphical feedback. The primary result of this study was that interleaved learning of
whole and sectional neuroanatomy was more efficient than the basic transfer method,
without cost to long-term retention or generalization of knowledge to recognizing new
images (Visible Human and MRI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.