ObjectivesPredicting the length of stay (LOS) of patients in a hospital is important in providing them with better services and higher satisfaction, as well as helping the hospital management plan and managing hospital resources as meticulously as possible. We propose applying data mining techniques to extract useful knowledge and draw an accurate model to predict the LOS of heart patients.MethodsData were collected from patients with coronary artery disease (CAD). The patient records of 4,948 patients who had suffered CAD were included in the analysis. The techniques used are classification with three algorithms, namely, decision tree, support vector machines (SVM), and artificial neural network (ANN). LOS is the target variable, and 36 input variables are used for prediction. A confusion matrix was obtained to calculate sensitivity, specificity, and accuracy.ResultsThe overall accuracy of SVM was 96.4% in the training set. Most single patients (64.3%) had an LOS ≤5 days, whereas 41.2% of married patients had an LOS >10 days. Moreover, the study showed that comorbidity states, such as lung disorders and hemorrhage with drug consumption have an impact on long LOS. The presence of comorbidities, an ejection fraction <2, being a current smoker, and having social security type insurance in coronary artery patients led to longer LOS than other subjects.ConclusionsAll three algorithms are able to predict LOS with various degrees of accuracy. The findings demonstrated that the SVM was the best fit. There was a significant tendency for LOS to be longer in patients with lung or respiratory disorders and high blood pressure.
Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.
Breast cancer is the most common cancer among women around the world. Despite enormous medical progress, breast cancer has still remained the second leading cause of death worldwide; thus, its early diagnosis has a significant impact on reducing mortality. However, it is often difficult to diagnose breast abnormalities. Different tools such as mammography, ultrasound, and thermography have been developed to screen breast cancer. In this way, the computer helps radiologists identify chest abnormalities more efficiently using image processing and artificial intelligence (AI) tools. This article examined various methods of AI using image processing to diagnose breast cancer. It was a review study through library and Internet searches. By searching the databases such as Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, Springer, IEEE, ScienceDirect, and Gray Literature (including Google Scholar, articles published in conferences, government technical reports, and other materials not controlled by scientific publishers) and searching for breast cancer keywords, AI and medical image processing techniques were extracted. The results were provided in tables to demonstrate different techniques and their results over recent years. In this study, 18,651 articles were extracted from 2007 to 2017. Among them, those that used similar techniques and reported similar results were excluded and 40 articles were finally examined. Since each of the articles used image processing, a list of features related to the image used in each article was also provided. The results showed that support vector machines had the highest accuracy percentage for different types of images (ultrasound =95.85%, mammography =93.069%, thermography =100%). Computerized diagnosis of breast cancer has greatly contributed to the development of medicine, is constantly being used by radiologists, and is clear in ethical and medical fields with regard to its effects. Computer-assisted methods increase diagnosis accuracy by reducing false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.