Breast cancer is the most common cancer among women around the world. Despite enormous medical progress, breast cancer has still remained the second leading cause of death worldwide; thus, its early diagnosis has a significant impact on reducing mortality. However, it is often difficult to diagnose breast abnormalities. Different tools such as mammography, ultrasound, and thermography have been developed to screen breast cancer. In this way, the computer helps radiologists identify chest abnormalities more efficiently using image processing and artificial intelligence (AI) tools. This article examined various methods of AI using image processing to diagnose breast cancer. It was a review study through library and Internet searches. By searching the databases such as Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, Springer, IEEE, ScienceDirect, and Gray Literature (including Google Scholar, articles published in conferences, government technical reports, and other materials not controlled by scientific publishers) and searching for breast cancer keywords, AI and medical image processing techniques were extracted. The results were provided in tables to demonstrate different techniques and their results over recent years. In this study, 18,651 articles were extracted from 2007 to 2017. Among them, those that used similar techniques and reported similar results were excluded and 40 articles were finally examined. Since each of the articles used image processing, a list of features related to the image used in each article was also provided. The results showed that support vector machines had the highest accuracy percentage for different types of images (ultrasound =95.85%, mammography =93.069%, thermography =100%). Computerized diagnosis of breast cancer has greatly contributed to the development of medicine, is constantly being used by radiologists, and is clear in ethical and medical fields with regard to its effects. Computer-assisted methods increase diagnosis accuracy by reducing false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.