Bio-degradable polymer blends of polylactic acid/thermoplastic starch (PLA/TPS) were prepared via direct melt blending varying order of mixing of ingredients fed into the extruder. The effect of interface interactions between PLA and TPS in the presence of maleic anhydride (MA) compatibilizer on the microstructure and mechanical properties was then investigated. The prepared PLA/ TPS blends were characterized by scanning electron microscopy, differential scanning calorimetry (DSC), tensile, and rheological measurements. Morphology of PLA/TPS shows that the introduction of MA into the polymer matrix increases the presence of TPS at the interface region. DSC results revealed the reduction of glass transition temperature of PLA with contributions from both TPS and MA. The crystallization temperature was decreased by the addition of MA leading to reduction of overall crystallization of PLA/TPS blend. The mechanical measurements show that increasing MA content up to 2 wt % enhances the modulus of PLA/TPS more than 45% compared to the corresponding blends free of MA compatibilizer.
Nanofiltration PA6/EVOH membranes were prepared through a nonsolvent induced phase separation technique. The effects of polymer concentration in the solution and solvent evaporation time on the performance and morphology of the resulting membranes were investigated by cloud point titration, permeation, and scanning electron microscopy (SEM). Experimental cloud point data for various prepared membranes suggested that polymer solutions with higher concentrations of PA6/ EVOH need a less content of nonsolvent. SEM observations show that an increase in polymer concentration leads to formation of a thin dense layer on the surface of the membrane thanks to pore size reduction. However, dense top layer of membrane becomes thicker as polymer concentration increases from 15 wt% to 20 wt%. The performance of membranes reveals a decrease with polymer concentration in casting solution. By contrast, Polyamide/Poly(ethylene-co-vinyl alcohol) membranes show an optimal performance with various formic acid evaporation times. J. VINYL ADDIT. TECHNOL., 00:000-000, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.