Exfoliation syndrome (XFS) is a systemic disease with significant ocular manifestations, including glaucoma and cataract. The disease impacts close to 70 million people globally and is now recognised as the most common identifiable cause of open-angle glaucoma. Since the discovery of XFS 100 years ago by Dr John G. Lindberg, there has been considerable advancement in understanding its pathogenesis and resulting clinical implications. The purpose of this paper is to summarise information regarding the epidemiology, pathophysiology, ocular manifestations and systemic associations of XFS with the objective of sharing clinical pearls to assist in early detection and enhanced management of patients.
Sport is becoming increasingly competitive and athletes are being exposed to greater physical demands, leaving them prone to injuries. Monitoring athletes with the use of wearable technology could provide a way to potentially manage training and competition loads and reduce injuries. One such technology is the VERT inertial measurement unit, a commercially available discrete wearable device containing a 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. Some of the main measurement outputs include jump count, jump height and landing impacts. While several studies have examined the accuracy of the VERT’s measures of jump height and jump count, landing impact force has not yet been investigated. The objective of this research study was to explore the validity of the VERT landing impact values. We hypothesized that the absolute peak VERT acceleration values during a jump-land cycle would fall within 10% of the peak acceleration values derived simultaneously from a research-grade accelerometer (Shimmer). Fourteen elite university-level volleyball players each performed 10 jumps while wearing both devices simultaneously. The results showed that VERT peak accelerations were variable (limits of agreement of -84.13% and 52.37%) and had a propensity to be lower (mean bias of -15.88%) when compared to the Shimmer. In conclusion, the validity of the VERT device’s landing impact values are generally poor, when compared to the Shimmer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.