Objective: Automated Pap smear cervical screening is one of the most effective imaging based cancer detection tools used for categorizing cervical cell images as normal and abnormal. Traditional classification methods depend on hand-engineered features and show limitations in large, diverse datasets. Effective feature extraction requires an efficient image preprocessing and segmentation, which remains prominent challenge in the field of Pathology. In this paper, a deep learning concept is used for cell image classification in large datasets. Methods: This relatively proposed novel method, combines abstract and complicated representations of data acquired in a hierarchical architecture. Convolution Neural Network (CNN) learns meaningful kernels that simulate the extraction of visual features such as edges, size, shape and colors in image classification. A deep prediction model is built using such a CNN network to classify the various grades of cancer: normal, mild, moderate, severe and carcinoma. It is an effective computational model which uses multiple processing layers to learn complex features. A large dataset is prepared for this study by systematically augmenting the images in Herlev dataset. Result: Among the three sets considered for the study, the first set of single cell enhanced original images achieved an accuracy of 94.1% for 5 class, 96.2% for 4 class, 94.8% for 3 class and 95.7% for 2 class problems. The second set includes contour extracted images showed an accuracy of 92.14%, 92.9%, 94.7% and 89.9% for 5, 4, 3 and 2 class problems. The third set of binary images showed 85.07% for 5 class, 84% for 4 class, 92.07% for 3 class and highest accuracy of 99.97% for 2 class problems. Conclusion: The experimental results of the proposed model showed an effective classification of different grades of cancer in cervical cell images, exhibiting the extensive potential of deep learning in Pap smear cell image classification.
Figure 1: SliceHub's integrated system: (a) repository with slicing results, (b) user interface for exploring trade-offs between different print resolution profiles and model scales, (c) infrastructure for slicing and interpolation to generate new slicing results-the results can then be added to the repository further extending the available options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.