A simple technique for the fabrication of interdigitated electrode (IDEs) using conventional lithography was presented. A top-down simple lithography approach was used to fabricate a set of Interdigitated electrodes were patterned with aluminum metal. Silicon dioxide serves to isolate the electrode from the substrate. A chrome mask was proposed to complete this work. In this work, the proposed method was experimentally demonstrated by fabricating the IDEs structure 4-5μm, approximately. The dimensions of structure were determined by using scanning electron microscopy (SEM). It is a simple, easy-to-use and cost effective method and does not require complicated micro-lithography process for fabricating desired microelectrode in reproducible approach.
The aim of this paper is to review several high-κ materials pertaining to their suitability as biocompatible layer in biosensor applications. The recent challenges and issues related to the process development of the stated applications were discussed. The materials were chosen based on the ideal biosensor characteristics such as biocompatibility of the material, the limit of detection, the sensitivity of the biosensor, etc. Based on our studies, TiO2thin-film has emerged as the most promising high-κ material for biosensor applications because of its excellent biocompatibility. The additional merits were its chemical stability and non-toxicity that makes the TiO2film the most sought after high-κ materials in biosensor application recently.
The paper reported a study on an effect of the point charge of the bio-interface of a nanowire field biosensor on the conductance of the nanowire, through finite element calculations using COMSOL Multiphysics. A model with 5 layers starting with silicon nanowire of radius 10nm surrounded by a 2-nm oxide layer, and the oxide layer were surrounded by a 5 nm thick functional layer and 2 points charge were considered for this study and last layer is for electrolyte. The results shows that is different voltages with points change is that effected on the conductance of nanowire that is clear from different of potential distribution of point charge.
The electrical performances of silicon dioxide-based Interdigitated electrodes (IDEs) as biosensor were developed. The IDEs was made up by two individually addressable Interdigitated comb-like finger structure have frequently been suggested as a biosensor which promises higher sensitivity compared to conventional parallel electrodes. The purpose of this paper was to investigate the capacitance test and impedance test to taken with various pH solution to observe the response of the sensor with different pH values. Purchased pH buffer solutions which varied from pH2 to pH10 are dropped on the microelectrode and the effect on it is investigated for the application in pH measurement. This research has proven that increase in pH value from acidic to alkaline is proportional with capacitance. The measured values of capacitance with respect to each pH concentrations applied during the measurements were repeatable and reproducible.
Silicon dioxide film has been used as the gate dielectric material in MOS device technology for decades. The film is normally grown in a diffusion furnace using a dry thermal oxidation process. As the device is scaled down to nanometer dimensions, the SiO2 film uniformity requirement is more stringent than ever. In this paper, the effect of furnace temperature and the flow rate of oxygen gas on wafer temperature distribution was investigated. The result was recorded by using the Infrared Thermometer with Dual Laser Targeting device (IRT5000). We have found that the uniformity of temperature distribution on the wafer is almost directly proportional to the O2 flow rate for the entire furnace temperature range (900 - 1050°C). On the other hand, the effect of O2 flow rate on wafer temperature distributions clearly shows two distinct regions; for furnace temperatures of less than 1000 °C, the higher the O2 flow rate, the better the uniformity. For the furnace temperatures of more than 1000 °C, we did not observe any clear dependency of wafer temperature distribution on O2 flow rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.