Over the last decade, the field of Human Attribute Recognition (HAR) has dramatically changed, mainly due to the improvements brought by deep learning solutions. This survey reviews the progress obtained in HAR, considering the transition from the traditional hand-crafted to deep-learning approaches. The most relevant works on the field are analyzed concerning the advances proposed to address the HAR's typical challenges. Furthermore, we outline the applications and typical evaluation metrics used in the HAR context. Finally, we provide a comprehensive review of the publicly available datasets for the development and evaluation of novel HAR approaches.
Human Attribute Recognition (HAR) is a highly active research field in computer vision and pattern recognition domains with various applications such as surveillance or fashion. Several approaches have been proposed to tackle the particular challenges in HAR. However, these approaches have dramatically changed over the last decade, mainly due to the improvements brought by deep learning solutions. To provide insights for future algorithm design and dataset collections, in this survey, (1) we provide an in-depth analysis of existing HAR techniques, concerning the advances proposed to address the HAR’s main challenges; (2) we provide a comprehensive discussion over the publicly available datasets for the development and evaluation of novel HAR approaches; (3) we outline the applications and typical evaluation metrics used in the HAR context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.