Salt stress is one of the major adverse environmental factors limiting crop productivity. Considering Iran as one of the bread wheat origins, we sequenced root transcriptome of an Iranian salt tolerant cultivar, Arg, under salt stress to extend our knowledge of the molecular basis of salinity tolerance in Triticum aestivum. RNA sequencing resulted in more than 113 million reads and about 104013 genes were obtained, among which 26171 novel transcripts were identified. A comparison of abundances showed that 5128 genes were differentially expressed due to salt stress. The differentially expressed genes (DEGs) were annotated with Gene Ontology terms, and the key pathways were identified using Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping. The DEGs could be classified into 227 KEGG pathways among which transporters, phenylpropanoid biosynthesis, transcription factors, glycosyltransferases, glutathione metabolism and plant hormone signal transduction represented the most significant pathways. Furthermore, the expression pattern of nine genes involved in salt stress response was compared between the salt tolerant (Arg) and susceptible (Moghan3) cultivars. A panel of novel genes and transcripts is found in this research to be differentially expressed under salinity in Arg cultivar and a model is proposed for salt stress response in this salt tolerant cultivar of wheat employing the DEGs. The achieved results can be beneficial for better understanding and improvement of salt tolerance in wheat.
Weeds are serious problem in crop production and wild oat is a grass weed of economic and agronomic significance. We need to extend our basic knowledge of weeds especially in molecular genetics and gene expression. For study of gene expression by semi-quantitative and quantitative PCR, it is recommended that normalization of reference genes be carried out in order to select the most stable reference gene for a precise gene expression study. The purpose of this research was evaluation of four reference genes in response to treated and untreated (control) by herbicide in two tissues (stem and leaf) of non-target site resistance wild oat (A. ludoviciana). Four candidate reference genes including Actin, Ef1α (elongation factor 1 alpha), GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and TBP (TATA-box-binding protein) were used to determine stable reference gene exposed to the herbicide using the statistical methods of NormFinder, BestKeeper and delta-Ct. NormFinder indicated that TBP and Actin genes are the best combination of two genes for normalizing calculations (with a combined gene stability value of 0.012) for qPCR analysis under herbicide stress in different tissues of non-target site resistance wild oat. Based on the statistical results, the Ef1α gene was identified as the unstable reference gene. Totally, according to results of this study, TBP gene is the most stable reference gene and therefore, this gene can be used as a reference gene for future studies of quantitative PCR analysis of herbicide stress-responsive gene expression in wild oat and potentially in other grass weed species.
This study investigates whether it is possible to produce an amylose-free potato starch by displacing the amylose enzyme, granule-bound starch synthase I (GBSSI), from the starch granule by engineered, high-affinity, multiple-repeat family 20 starch-binding domains (SBD2, SBD3, SBD4, and SBD5). The constructs were introduced in the amylose-containing potato cultivar (cv. Kardal), and the starches of the resulting transformants were compared with those of SBD2-expressing amylose-free (amf) potato clones. It is shown that a correctly sized protein accumulated in the starch granules of the various transformants. The amount of SBD accumulated in starch increased progressively from SBD to SBD3; however, it seemed as if less SBD4 and SBD5 was accumulated. A reduction in amylose content was not achieved in any of the transformants. However, it is shown that SBDn expression can affect physical processes underlying granule assembly, in both genetic potato backgrounds, without altering the primary structure of the constituent starch polymers and the granule melting temperature. Granule size distribution of the starches obtained from transgenic Kardal plants were similar to those from untransformed controls, irrespective of the amount of SBDn accumulated. In the amf background, granule size is severely affected. In both the Kardal and amf background, apparently normal oval-shaped starch granules were composed of multiple smaller ones, as evidenced from the many "Maltese crosses" within these granules. The results are discussed in terms of different binding modes of SBD.
It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N-or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more intimate contact with growing starch granules, and to facilitate the incorporation of mutan polymers in starch. Fusion proteins of the appropriate size were evidenced in starch granules, particularly in the amf background. The starches from the various GtfICAT/ SBD transformants seemed to contain less mutan than those from transformants with GtfICAT alone, suggesting that the appended SBD might inhibit the activity of GtfICAT in the engineered fusion proteins. Scanning electron microscopy showed that expression of SBD-GtfICAT resulted in alterations of granule morphology in both genetic backgrounds. Surprisingly, the amf starches containing SBD-GtfICAT had a spongeous appearance, i.e., the granule surface contained many small holes and grooves, suggesting that this fusion protein can interfere with the lateral interactions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.