Thermodynamic and kinetic limitations can restrict the feasibility and scalability of conventional catalytic processes for CO 2 methanation at the industrial level. Due to its nonequilibrium nature, nonthermal plasma (NTP) promises to reduce reaction barriers and make this gas conversion approach viable even at low temperatures. However, the current understanding of the fundamental chemical and physical behaviors in the hybrid plasma catalytic interactions is insufficient. This study demonstrates plasma-driven CO 2 conversions approaching the reaction equilibrium with high methane yields even at low temperature (150 °C). It was observed that the addition of plasma to the catalytic bed enhanced the CO 2 conversion around 20 times relative to thermal activity, whereas the CH 4 selectivity increased around 5 times by introducing the nickel catalyst into plasma discharge compared to plasma only (at 150 °C). Moreover, the findings provide new insights into the gas phase activation of reactants (CO 2 and H 2 ) and the reaction over Ni 0 to decouple the plasma and catalyst synergy. The catalyst did not undergo significant structural changes under plasma discharge, apart from a slight decrease in Ni crystallite size, while an enhanced metal dispersion was evident (24% to 42%, from CO pulse chemisorption). The optimized system achieved a CO 2 conversion of 60% with a CH 4 selectivity of over 97% at 150 °C, which required much higher temperatures (320−330 °C) to achieve equivalent conversion in thermal catalysis. This study is a step toward an understanding and effective control of the plasma enhanced catalytic CO 2 transformation via low energy reaction pathways that utilize the NTP for low-temperature CO 2 methanation with high conversion, selectivity, stability, and controllability.
Termites are eusocial arthropod decomposers, and improve soil fertility, crop yield, and also are used by humans for their benefits across the world. However, some species of termites are becoming a threat to the farming community as they are directly and indirectly causing major losses to the agricultural system. It is estimated that termites cost the global economy more than 40 billion USD annually, and considerable research has been done on their management. In this review, we present the available information related to sustainable and integrated termite management practices (ITM). Furthermore, we insist that the better management of this menace can be possible through: (i) improving traditional methods to keep termites away from crops; (ii) improving agricultural practices to maintain plants with more vigor and less susceptible to termite attack; and (iii) integration of available techniques to reduce termite infestation in crops and surroundings. The application of an effective combination of traditional practices with recently developed approaches is the best option for agricultural growers. Moreover, keeping in mind the beneficial nature of this pest, more innovative efforts for its management, particularly using rapidly emerging technology (e.g., RNA interference), are needed.
Fungus-cultivating termites are successful herbivores largely rely on the external symbiotic fungus-combs to decompose plant polysaccharides. The comb harbors both fungi and bacteria. However, the complementary roles and functions of the bacteria are out of the box. To this purpose, we look into different decomposition stages of fungus-combs using highthroughput sequencing of the 16S rRNA gene to examine bacterial community structure. We also explored the bacterial response to physicochemical indexes (such as moisture, ash content and organic matter) and plant substrates (leaves or branches or mix food). Some specific families such as Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae may be involved in lignocellulose degradation, whereas Burkholderiaceae may be associated with aromatic compounds degradation. We observed that as the comb mature there is a shift of community composition which may be an adjustment of specific bacteria to deal with different lignocellulosic material. Our results indicated that threshold amount of physicochemical indexes are beneficial for bacterial diversity but too high moisture, low organic matter and high ash content may reduce their diversity. Furthermore, the average highest bacterial diversity was recorded from the comb built by branches followed by mix food and leaves. Besides, this study could help in the use of bacteria from the comb of fungus-cultivating termites in forestry and agricultural residues making them easier to digest as fodder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.