Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether-and carbon-carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating termite system, we reveal unprecedentedly rapid lignin depolymerization and degradation by combining laboratory feeding experiments, lignocellulosic compositional measurements, electron microscopy, 2D-NMR, and thermochemolysis. In a gut transit time of under 3.5 h, in young worker termites, poplar lignin sidechains are extensively cleaved and the polymer is significantly depleted, leaving a residue almost completely devoid of various condensed units that are traditionally recognized to be the most recalcitrant. Subsequently, the fungus-comb microbiome preferentially uses xylose and cleaves polysaccharides, thus facilitating final utilization of easily digestible oligosaccharides by old worker termites. This complementary symbiotic pretreatment process in the fungus-growing termite symbiosis reveals a previously unappreciated natural system for efficient lignocellulose degradation.ignin is a heterogeneous plant cell wall polymer derived primarily from hydroxycinnamyl alcohols via combinatorial radical coupling reactions (1). Its depolymerization is challenging, making lignin a major barrier to gaining access to stored energy within lignocellulosic materials (2). Woody biomass, such as that contained in pine and poplar trees, represents the most abundant renewable energy resource in our terrestrial ecosystems. Because of a high content of lignin, a complex polymer that contains ether-and carbon-carbon linkages between monomerderived units (1, 3), biotechnological efforts to use this material for bioenergy require expensive chemical, physical, or biological pretreatment processes to partially delignify lignocellulose to allow access to plant polysaccharides (2).Termites are remarkably efficient at degrading woody biomass (4). Within hours, they digest 74-99% of cellulose and 65-87% of hemicellulose, leaving the lignin-rich residues as feces; that is, they process far more efficiently than other herbivores that can digest the less-lignified forages, such as grasses, leaves, and forest litter (5). Among termites, the subfamily Macrotermitinae form a monophyletic group of diverse species that originated in Africa and have cultivated specialized fungi (Termitomyces spp.) in their nests using woody or litter-based biomass for about 31 million years, and are able to almost completely decompose lignocellulose (6, 7). These termites enable the consumption of more than 90% of dead plant tissues in some arid tropical areas (7,8), and thus play central ecological roles in Old World (sub)tropical carbon cycling ( Fig. 1 A and B) (8). Throughout their evolutionary history, fungus-cultivating termites have evolved in mutualistic association with multiple microbial symbi...
Fungus-cultivating termites are successful herbivores largely rely on the external symbiotic fungus-combs to decompose plant polysaccharides. The comb harbors both fungi and bacteria. However, the complementary roles and functions of the bacteria are out of the box. To this purpose, we look into different decomposition stages of fungus-combs using highthroughput sequencing of the 16S rRNA gene to examine bacterial community structure. We also explored the bacterial response to physicochemical indexes (such as moisture, ash content and organic matter) and plant substrates (leaves or branches or mix food). Some specific families such as Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae may be involved in lignocellulose degradation, whereas Burkholderiaceae may be associated with aromatic compounds degradation. We observed that as the comb mature there is a shift of community composition which may be an adjustment of specific bacteria to deal with different lignocellulosic material. Our results indicated that threshold amount of physicochemical indexes are beneficial for bacterial diversity but too high moisture, low organic matter and high ash content may reduce their diversity. Furthermore, the average highest bacterial diversity was recorded from the comb built by branches followed by mix food and leaves. Besides, this study could help in the use of bacteria from the comb of fungus-cultivating termites in forestry and agricultural residues making them easier to digest as fodder.
Fungus‐growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus‐growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host–termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.
Termitomyces species are wild edible mushrooms that possess high nutritional value and a wide range of medicinal properties. However, the cultivation of these mushrooms is very difficult because of their symbiotic association with termites. In this study, we aimed to examine the differences in physicochemical indices and microbial communities between combs with Termitomyces basidiomes (CF) and combs without Termitomyces basidiomes (CNF). High-performance liquid chromatography (HPLC), inductively coupled plasma optical emission spectrometry (ICP-OES), gas chromatography equipped with a flame ionization detector (GC-FID), some commercial kits, high-throughput sequencing of the 16s RNA, and internal transcribed spacer (ITS) were used. Humidity, pH, and elements, i.e., Al, Ba, Fe, Mn, Ni, S, Ca, and Mg were higher while amino acids particularly alanine, tyrosine, and isoleucine were lower in CF as compared to CNF. The average contents of fatty acids were not significantly different between the two comb categories. The bacterial genera Alistipes, Burkholderia, Sediminibacterium, and Thermus were dominant in all combs. Brevibacterium, Brevundimonas, and Sediminibacterium were significantly more abundant in CF. Basidiomycota and Ascomycota were also identified in combs. Termitomyces clypeatus, Termitomyces sp. Group3, and Termitomyces sp. were the most dominant species in combs. However, any single Termitomyces species was abundantly present in an individual comb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.