The rapid advances in the internet and communication fields have resulted in a huge increase in the network size and the corresponding data. As a result, many novel attacks are being generated and have posed challenges for network security to accurately detect intrusions. Furthermore, the presence of the intruders with the aim to launch various attacks within the network cannot be ignored. An intrusion detection system (IDS) is one such tool that prevents the network from possible intrusions by inspecting the network traffic, to ensure its confidentiality, integrity, and availability. Despite enormous efforts by the researchers, IDS still faces challenges in improving detection accuracy while reducing false alarm rates and in detecting novel intrusions. Recently, machine learning (ML) and deep learning (DL)‐based IDS systems are being deployed as potential solutions to detect intrusions across the network in an efficient manner. This article first clarifies the concept of IDS and then provides the taxonomy based on the notable ML and DL techniques adopted in designing network‐based IDS (NIDS) systems. A comprehensive review of the recent NIDS‐based articles is provided by discussing the strengths and limitations of the proposed solutions. Then, recent trends and advancements of ML and DL‐based NIDS are provided in terms of the proposed methodology, evaluation metrics, and dataset selection. Using the shortcomings of the proposed methods, we highlighted various research challenges and provided the future scope for the research in improving ML and DL‐based NIDS.
Today's smartphones are equipped with a large number of powerful value-added sensors and features such as a low power Bluetooth sensor, powerful embedded sensors such as the digital compass, accelerometer, GPS sensors, Wi-Fi capabilities, microphone, humidity sensors, health tracking sensors, and a camera, etc. These value-added sensors have revolutionized the lives of the human being in many ways such, as tracking the health of the patients and movement of doctors, tracking employees movement in large manufacturing units, and monitoring the environment, etc. These embedded sensors could also be used for large-scale personal, group, and community sensing applications especially tracing the spread of certain diseases. Governments and regulators are turning to use these features to trace the people thought to have symptoms of certain diseases or virus e.g. COVID-19. The outbreak of COVID-19 in December 2019, has seen a surge of the mobile applications for tracing, tracking and isolating the persons showing COVID-19 symptoms to limit the spread of disease to the larger community. The use of embedded sensors could disclose private information of the users thus potentially bring threat to the privacy and security of users. In this paper, we analyzed a large set of smartphone applications that have been designed to contain the spread of the COVID-19 virus and bring the people back to normal life. Specifically, we have analyzed what type of permission these smartphone apps require, whether these permissions are necessary for the track and trace, how data from the user devices is transported to the analytic center, and analyzing the security measures these apps have deployed to ensure the privacy and security of users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.