Machine-to-machine (M2M) communication is becoming an increasingly important part of mobile traffic and thus also a topic of major interest for mobile communication research and telecommunication standardization bodies. M2M communication offers various ubiquitous services and is one of the main enablers of the vision inspired by the Internet of Things (IoT). The concept of mobile M2M communication has emerged due to the wide range, coverage provisioning, high reliability, and decreasing costs of future mobile networks. Nevertheless, M2M communications pose significant challenges to mobile networks, e.g., due to the expected large number of devices with simultaneous access for sending small-sized data, and a diverse application range. This paper provides a detailed survey of M2M communications in the context of mobile networks, and thus focuses on the latest Long-Term Evolution-Advanced (LTE-A) networks. Moreover, the end-to-end network architectures and reference models for M2M communication are presented. Furthermore, a comprehensive survey is given to M2M service requirements, major current standardization efforts, and upcoming M2M-related challenges. In addition, an overview of upcoming M2M services expected in 5G networks is presented. In the end, various mobile M2M applications are discussed followed by open research questions and directions.
The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices are mainly based on narrowband applications. Standards like LTE-A might not provide efficient spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate node before transmission can answer the issues of spectral efficiency. The objective of this work is to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into 5G network by multiplexing data packets at the RN before transmission to the Base Station (BS) in the form of large multiplexed packets. Frequency resource blocks can be shared among several devices with this method. An analytical model for this scheme, developed as an r-stage Coxian process, determines the radio resource utilization and system gain achieved. The model is validated by comparing the obtained results with simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.