A consecutive optimization based on statistical approach was applied for a-glucosidase production by both wild and mutant T. dupontii. Plackett Burman design (PBD) with two levels was employed in order to screen the significant effect of different nutritional and physical parameters through submerged fermentation. Among all nine variables tested in PBD, incubation time, inoculum size and ammonium sulphate concentration were selected. The Box-Behnken approach was further applied for process optimization. The a-glucosidase production for both wild and mutant T.dupontii was obtained at 72 h of incubation, 1.25 mL inoculum size and 0.25% ammonium sulphate concentration with relatively 95% correlation between the experimentally predicted and observed values. The duration of maximum enzyme production in RSM was cost-saving and fast. The quadratic model was in satisfactory adjustment with the experimental data with high R2 value which describes 98.90% of response variability of the model. Moreover, the novel approach of this present work is that, consecutive optimization were applied for maximum a-glucosidase production using response surface methodology by both wild and mutant thermophillic T. dupontii. Results revealed that thermophillic mutant T. dupontii could be potential candidate for industrial applications.
Delignification efficacy of xylanases to facilitate the consequent chemical bleaching of Kraft pulps has been studied widely. In this work, an alkaline and thermally stable cellulase-less xylanase, derived from a xylanolytic Bacillus subtilis, has been purified by a combination of gel filtration and Q-Sepharose chromatography to its homogeneity. Molecular weight of the purified xylanase was 61 kDa by SDS-PAGE. The purified enzyme revealed an optimum assay temperature and pH of 60°C and 8.0, respectively. Xylanase was active in the pH range of 6.0-9.0 and stable up to 70°C. Divalent ions like Ca(2+), Mg(2+) and Zn(2+) enhanced xylanase activity, whereas Hg(2+), Fe(2+), and Cu(2+) were inhibitory to xylanase at 2 mM concentration. It showed K ( m ) and V ( max ) values of 9.5 mg/ml and 53.6 μmol/ml/min, respectively, using birchwood xylan as a substrate. Xylanase exhibited higher values of turn over number (K (cat)) and catalytic efficiency (K (cat)/K (m)) with birchwood xylan than oat spelt xylan. Bleach-boosting enzyme activity at 30 U/g dry pulp displayed the optimum bio-delignification of Kraft pulp resulting in 26.5% reduction in kappa number and 18.5% ISO induction in brightness at 55°C after 3 h treatment. The same treatment improved the pulp properties including tensile strength and burst index, demonstrating its potential application in pre-bleaching of Kraft pulp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.