Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-stratified, contact-structured epidemiological compartmental model, which we call the INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions (NPIs), an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05—0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 35% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.
Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. The INDSCI-SIM model is a 9-component, age-stratified, contact-structured compartmental model for COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions, an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient across the country. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05 - 0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 40% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India.
Environmental temperature is a key driver of malaria transmission dynamics. Using detailed temperature records from four sites: low elevation (1800), mid elevation (2200 m), and high elevation (2600–3200 m) in the western Himalaya, we model how temperature regulates parasite development rate (the inverse of the extrinsic incubation period, EIP) in the wild. Using a Briére parametrization of the EIP, combined with Bayesian parameter inference, we study the thermal limits of transmission for avian ( Plasmodium relictum ) and human Plasmodium parasites ( P. vivax and P. falciparum ) as well as for two malaria‐like avian parasites, Haemoproteus and Leucocytozoon . We demonstrate that temperature conditions can substantially alter the incubation period of parasites at high elevation sites (2600–3200 m) leading to restricted parasite development or long transmission windows. The thermal limits (optimal temperature) for Plasmodium parasites were 15.62–34.92°C (30.04°C) for P. falciparum , 13.51–34.08°C (29.02°C) for P. vivax , 12.56–34.46°C (29.16°C) for P. relictum and for two malaria‐like parasites, 12.01–29.48°C (25.16°C) for Haemoproteus spp. and 11.92–29.95°C (25.51°C) for Leucocytozoon spp. We then compare estimates of EIP based on measures of mean temperature versus hourly temperatures to show that EIP days vary in cold versus warm environments. We found that human Plasmodium parasites experience a limited transmission window at 2600 m. In contrast, for avian Plasmodium transmission was not possible between September and March at 2600 m. In addition, temperature conditions suitable for both Haemoproteus and Leucocytozoon transmission were obtained from June to August and in April, at 2600 m. Finally, we use temperature projections from a suite of climate models to predict that by 2040, high elevation sites (~2600 m) will have a temperature range conducive for malaria transmission, albeit with a limited transmission window. Our study highlights the importance of accounting for fine‐scale thermal effects in the expansion of the range of the malaria parasite with global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.