COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage. India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met.
COVID-19 testing across India uses a mix of two types of tests. Rapid Antigen Tests (RATs) are relatively inexpensive point-of-care lateral-flow-assay tests, but they are also less sensitive. The reverse-transcriptase polymerase-chain-reaction (RT-PCR) test has close to 100% sensitivity and specificity in a laboratory setting, but delays in returning results, as well as increased costs relative to RATs, may vitiate this advantage.India-wide, about 49% of COVID-19 tests are RATs, but some Indian states, including the large states of Uttar Pradesh (pop. 227.9 million) and Bihar (pop. 121.3 million) use a much higher proportion of such tests. Here we show, using simulations based on epidemiological network models, that the judicious use of RATs can yield epidemiological outcomes comparable to those obtained through RT-PCR-based testing and isolation of positives, provided a few conditions are met. These are (a) that RAT test sensitivity is not too low, (b) that a reasonably large fraction of the population, of order 0.5% per day, can be tested, (c) that those testing positive are isolated for a sufficient duration, and that (d) testing is accompanied by other non-pharmaceutical interventions for increased effectiveness. We assess optimal testing regimes, taking into account test sensitivity and specificity, background seroprevalence and current test pricing. We find, surprisingly, that even 100% RAT test regimes should be acceptable, from both an epidemiological as well as a economic standpoint, provided the conditions outlined above are met.Author summaryUsing network models, we study optimal ways of combining low sensitivity, relatively inexpensive point-of-care rapid antigen tests for COVID-19 with higher sensitivity but more expensive laboratory RT-PCR tests. We take into account background seroprevalence and current test pricing for such tests in India, finding that even purely rapid antigen test-based regimes can produce the same reduction in overall infections that pure RT-PCR tests are capable of. This is provided one can test at scale and isolate those testing positive effectively, that the sensitivity of the rapid test is not too low and that non-pharmaceutical interventions proceed in parallel for increased effectiveness.
Background: The course of the COVID-19 pandemic has been driven by several dynamic behavioral, immunological, and viral factors. We used mathematical modeling to explore how the concurrent reopening of schools, increasing levels of hybrid immunity, and the emergence of the Omicron variant have affected the trajectory of the pandemic in India, using the model Indian state of Andhra Pradesh (pop: 53 million). Methods: We constructed an age- and contact-structured compartmental model that allows for individuals to proceed through various states depending on whether they have received zero, one, or two doses of the COVID-19 vaccine. Our model is calibrated using results from other models as well as available serosurvey data. The introduction of the Omicron variant is modelled alongside protection gained from hybrid immunity. We predict disease dynamics in the background of hybrid immunity coming from infections and well as an ongoing vaccination program, given prior levels of seropositivity from earlier waves of infection. We describe the consequences of school reopening on cases across different age-bands, as well as the impact of the Omicron (BA.2) variant. Results: We show the existence of an epidemic peak that is strongly related to the value of background seroprevalence. As expected, because children were not vaccinated in India, re-opening schools increases the number of cases in children more than in adults, although most such cases are asymptomatic or mild. The height of this peak reduced as the background infection-induced seropositivity was increased from 20% to 40%. At reported values of seropositivity of 64%, no discernable peak was seen. We also explore counterfactual scenarios regarding the effect of vaccination on hybrid immunity. We find that in the absence of vaccination, even at such high levels of seroprevalence, the emergence of the Omicron variant would have resulted in a large rise in cases across all age bands. We conclude that the presence of high levels of hybrid immunity thus resulted in relatively fewer cases in the Omicron wave than in the Delta wave. Interpretation: In India, the decreasing prevalence of immunologically naive individuals of all ages helped reduce the number of cases reported once schools were reopened. In addition, hybrid immunity, together with the lower intrinsic severity of disease associated with the Omicron variant, contributed to low reported COVID-19 hospitalizations and deaths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.