Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs' four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs' four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs' conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions-maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.
The network structure of an urban transportation system has a significant impact on its traffic performance. This study uses network indicators along with several traffic performance measures including speed, trip length, travel time, and traffic volume, to compare a selection of seven transportation networks with a variety of structures and under different travel demand conditions.The selected network structures are: modified linear, branch, grid, 3-directional grid, 1-ring web, 2-ring web, and radial. For the analysis, a base origin-destination matrix is chosen, to which different growth factors are applied in order to simulate various travel demand conditions. Results show that overall the 2-ring web network offers the most efficient traffic performance, followed by the grid and the 1-ring networks. A policy application of this study is that the branch, 3-directional grid, and radial networks are mostly suited for small cities with uncongested traffic conditions. In contrast, the 2-ring web, grid, and 1-ring web networks are better choices for large urban areas since they offer more connectivity, thus allowing them to perform efficiently under congested traffic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.