Data dan informasi merupakan bagian penting dalam pertimbangan mengambil keputusan terkait penanganan COVID-19. Data COVID-19 baik demografi maupun agregat di Provinsi DKI Jakarta diolah dan dianalisis untuk memberikan informasi mengenai situasi dan kondisi terkini terkait pandemi COVID-19 di Provinsi DKI Jakarta. Data COVID-19 tersebut juga dimanfaatkan untuk analisis prediktif untuk mengetahui perkiraan jumlah kasus COVID-19 di masa depan. Analisis prediktif yang digunakan dalam artikel ini adalah metode Autoregressive Integrated Moving Average (ARIMA). Model ARIMA merupakan salah satu metode forecasting hasil dari perluasan model Autoregressive Moving Average (ARMA) untuk data yang tidakstasioner. Analisis dan visualisasi data dilakukan menggunakan program Python dan Tableau dimana hasil analisis prediktif memperlihatkan tren kasus positif harian yang cenderung naik di kurun waktu 14 hari ke depan dari data yang digunakan. Hasil analisis ini dapat digunakan sebagai pertimbangan bagi pemerintah dalam mengambil kebijakan dan intervensi dalam penanganan COVID-19 di Jakarta, dan untuk masyarakat agar tetap melakukan tindakan preventif dalam mencegah kenaikan kasus, seperti mematuhi protokol kesehatan yang sudah ditetapkan oleh Pemerintah.
The chaotic world situation caused by the SARS-CoV-2 virus (COVID-19 pandemic) has hampered many sectors of human activity, especially in activities that require physical interactions. Thus, requiring social restrictions for those sectors that are affected. This paper reports the analysis of the proposed system for monitoring and supporting public activities in order to carry out social restrictions, specifically in the DKI Jakarta province. The proposed systems are YOLO and MobileNet SSD as its main weight to help this detection system with 30% and 40% confidence, respectively. The results of object counting and physical distancing are expected to be a guideline for public complaints in the future by using several CCTV locations points with better image quality and better angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.