This paper examines the latency in Internet path failure, failover and repair due to the convergence properties of interdomain routing. Unlike s w i t c hes in the public telephony n e twork which exhibit failover on the order of milliseconds, our experimental measurements show t h a t i n ter-domain routers in the packet switched Internet may take tens of minutes to reach a consistent view of the network topology after a fault. These delays stem from temporary routing table oscillations formed during the operation of the BGP path selection process on Internet backbone routers. During these periodsofdelayed c onvergence, w e s h o w that end-to-end Internet paths will experience intermittent loss of connectivity, as well as increased packet loss and latency. We present a two-year study of Internet routing convergence through the experimental instrumentation of key portions of the Internet infrastructure, including both passive data collection and fault-injection machines at major Internet exchange points. Based on data from the injection and measurement o f s e v eral hundred thousand inter-domain routing faults, we describe several unexpected properties of convergence and show that the measured upper bound on Internet inter-domain routing convergence delay is an order of magnitude slower than previously thought. Our analysis also shows that the upper theoretic computational bound on the numberofrouter states and control messages exchanged during the process of BGP convergence is factorial with respect to the number of autonomous systems in the Internet. Finally, w e demonstrate that much o f the observed convergence delay s t e m s from speci c router vendor implementation decisions and ambiguity in the BGP speci cation.
Numerous attacks, such as worms, phishing, and botnets, threaten the availability of the Internet, the integrity of its hosts, and the privacy of its users. A core element of defense against these attacks is anti-virus (AV) software-a service that detects, removes, and characterizes these threats. The ability of these products to successfully characterize these threats has far-reaching effects-from facilitating sharing across organizations, to detecting the emergence of new threats, and assessing risk in quarantine and cleanup. In this paper, we examine the ability of existing host-based anti-virus products to provide semantically meaningful information about the malicious software and tools (or malware) used by attackers. Using a large, recent collection of malware that spans a variety of attack vectors (e.g., spyware, worms, spam), we show that different AV products characterize malware in ways that are inconsistent across AV products, incomplete across malware, and that fail to be concise in their semantics. To address these limitations, we propose a new classification technique that describes malware behavior in terms of system state changes (e.g., files written, processes created) rather than in sequences or patterns of system calls. To address the sheer volume of malware and diversity of its behavior, we provide a method for automatically categorizing these profiles of malware into groups that reflect similar classes of behaviors and demonstrate how behavior-based clustering provides a more direct and effective way of classifying and analyzing Internet malware.
No abstract
In this paper, we describe an experimental study of Internet topological stability and the origins of failure in Internet protocol backbones. The stability of end-toend Internet paths is dependent both on the underlying telecommunication switching system, as well as the higher level software and hardware c omponents speci c to the Internet's packet-switched forwarding and routing architecture. Although a number of earlier studies have examined failures in the public telecommunication system, little attention has been given to the characterization of Internet stability. We provide analysis of the stability of major paths between Internet Service Providers based on the experimental instrumentation of key portions of the Internet infrastructure. We describe unexpectedly high levels of path uctuation and an aggregate low mean time between failures for individual Internet paths. We also provide a case study of the network failures observed in a large regional Internet backbone. We characterize the type, origin, frequency and duration of these failures.
This paper examines the latency in Internet path failure, failover, and repair due to the convergence properties of interdomain routing. Unlike circuit-switched paths which exhibit failover on the order of milliseconds, our experimental measurements show that interdomain routers in the packet-switched Internet may take tens of minutes to reach a consistent view of the network topology after a fault. These delays stem from temporary routing table fluctuations formed during the operation of the Border Gateway Protocol (BGP) path selection process on Internet backbone routers. During these periods of delayed convergence, we show that end-to-end Internet paths will experience intermittent loss of connectivity, as well as increased packet loss and latency. We present a two-year study of Internet routing convergence through the experimental instrumentation of key portions of the Internet infrastructure, including both passive data collection and fault-injection machines at major Internet exchange points. Based on data from the injection and measurement of several hundred thousand interdomain routing faults, we describe several unexpected properties of convergence and show that the measured upper bound on Internet interdomain routing convergence delay is an order of magnitude slower than previously thought. Our analysis also shows that the upper theoretic computational bound on the number of router states and control messages exchanged during the process of BGP convergence is factorial with respect to the number of autonomous systems in the Internet. Finally, we demonstrate that much of the observed convergence delay stems from specific router vendor implementation decisions and ambiguity in the BGP specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.