Olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are shown to be expressed in several non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of unilateral ureteral obstruction (UUO). Transcriptional analysis by real-time quantitative polymerase chain reaction demonstrated considerable changes in the expression pattern of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622 during the progression of kidney fibrosis. For localization of these ORs, single-cell RNA-sequencing datasets of normal and UUO mice were reanalyzed. Results showed that Olfr433 is highly expressed in macrophages in day-2 and 7 post-injury in UUO mice and not in normal subgroups. Besides, like previous findings, Olfr1393 was shown to be expressed prominently in the proximal tubular cells of the kidney. In conclusion, our combinatorial temporal approach to the underlying mechanisms of chronic kidney disease highlighted the potential role of ORs in progression of fibrosis. The expression of Olfr433 in the macrophages provides some clue about its relation to molecular mechanisms promoted in the fibrotic kidney. The proposed ORs in this study could be the subject of further functional assessments in the future.
Background: Diabetic kidney disease has substantial burden and limited therapeutic options. An inadequate understanding of the complex gene regulatory circuits underlying this disorder contributes to the insufficiency of current treatment strategies. MicroRNAs (miRNAs) play a crucial role as regulators of functionally related gene networks. Previously, mmu-mir-802-5p was identified as the sole dysregulated miRNA in both the kidney cortex and medulla of diabetic mice. This study aims to investigate the role of miR-802-5p in diabetic kidney disease. Materials and Methods: The validated and predicted targets of miR-802-5p were identified using miRTarBase and TargetScan databases, respectively. The functional role of this miRNA was inferred using gene ontology enrichment analysis. The expression of miR-802-5p and its selected targets were assessed by qPCR. The expression of the angiotensin receptor (Agtr1a) was measured by ELISA. Results: miR-802-5p exhibited dysregulation in both the kidney cortex and medulla of diabetic mice, with two- and four-fold over-expressions, respectively. Functional enrichment analysis of the validated and predicted targets of miR-802-5p revealed its involvement in the renin-angiotensin pathway, inflammation, and kidney development. Differential expression was observed in the Pten transcript and Agtr1a protein among the examined gene targets. Conclusion: These findings suggest that miR-802-5p is a critical regulator of diabetic nephropathy in the cortex and medulla compartments, contributing to disease pathogenesis through the renin-angiotensin axis and inflammatory pathways.
The olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are distributed in several non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of unilateral ureteral obstruction. Transcriptional analysis demonstrated considerable changes in the expression pattern of Olfr1393, Olfr433, Olfr129, and Olfr161 during the progression of kidney fibrosis. In conclusion, our results highlight the impact of systems biology in determination of the underlying mechanisms of chronic diseases and indicate the importance of time-course approaches to unravel the patterns of gene expression. The novel ORs proposed in this study could be the subject of further functional investigations in the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.