The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.
Network traffic generation is one of the primary techniques that is used to design and analyze the performance of network security systems. However, due to the diversity of IoT networks in terms of devices, applications and protocols, the traditional network traffic generator tools are unable to generate the IoT specific protocols traffic. Hence, the traditional traffic generator tools cannot be used for designing and testing the performance of IoT-specific security solutions. In order to design an IoT-based traffic generation framework, two main challenges include IoT device modelling and generating the IoT normal and attack traffic simultaneously. Therefore, in this work, we propose an open-source framework for IoT traffic generation which supports the two widely used IoT application layer protocols, i.e., MQTT and CoAP. The proposed framework allows a user to create an IoT use case, add customized IoT devices into it and generate normal and malicious IoT traffic over a real-time network. Furthermore, we set up a real-time IoT smart home use case to manifest the applicability of the proposed framework for developing the security solutions for IoT smart home by emulating the real world IoT devices. The experimental results demonstrate that the proposed framework can be effectively used to develop better security solutions for IoT networks without physically deploying the real-time use case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.