ObjectiveTo develop and validate an integrative system to predict long term kidney allograft failure.DesignInternational cohort study.SettingThree cohorts including kidney transplant recipients from 10 academic medical centres from Europe and the United States.ParticipantsDerivation cohort: 4000 consecutive kidney recipients prospectively recruited in four French centres between 2005 and 2014. Validation cohorts: 2129 kidney recipients from three centres in Europe and 1428 from three centres in North America, recruited between 2002 and 2014. Additional validation in three randomised controlled trials (NCT01079143, EudraCT 2007-003213-13, and NCT01873157).Main outcome measureAllograft failure (return to dialysis or pre-emptive retransplantation). 32 candidate prognostic factors for kidney allograft survival were assessed.ResultsAmong the 7557 kidney transplant recipients included, 1067 (14.1%) allografts failed after a median post-transplant follow-up time of 7.12 (interquartile range 3.51-8.77) years. In the derivation cohort, eight functional, histological, and immunological prognostic factors were independently associated with allograft failure and were then combined into a risk prediction score (iBox). This score showed accurate calibration and discrimination (C index 0.81, 95% confidence interval 0.79 to 0.83). The performance of the iBox was also confirmed in the validation cohorts from Europe (C index 0.81, 0.78 to 0.84) and the US (0.80, 0.76 to 0.84). The iBox system showed accuracy when assessed at different times of evaluation post-transplant, was validated in different clinical scenarios including type of immunosuppressive regimen used and response to rejection therapy, and outperformed previous risk prediction scores as well as a risk score based solely on functional parameters including estimated glomerular filtration rate and proteinuria. Finally, the accuracy of the iBox risk score in predicting long term allograft loss was confirmed in the three randomised controlled trials.ConclusionAn integrative, accurate, and readily implementable risk prediction score for kidney allograft failure has been developed, which shows generalisability across centres worldwide and common clinical scenarios. The iBox risk prediction score may help to guide monitoring of patients and further improve the design and development of a valid and early surrogate endpoint for clinical trials.Trial registrationClinicaltrials.gov NCT03474003.
Late antibody-mediated rejection (ABMR) is a leading cause of kidney allograft failure. Uncontrolled studies have suggested efficacy of the proteasome inhibitor bortezomib, but no systematic trial has been undertaken to support its use in ABMR. In this randomized, placebo-controlled trial (the Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection [BORTEJECT] Trial), we investigated whether two cycles of bortezomib (each cycle: 1.3 mg/m intravenously on days 1, 4, 8, and 11) prevent GFR decline by halting the progression of late donor-specific antibody (DSA)-positive ABMR. Forty-four DSA-positive kidney transplant recipients with characteristic ABMR morphology (median time after transplant, 5.0 years; pretransplant DSA documented in 19 recipients), who were identified on cross-sectional screening of 741 patients, were randomly assigned to receive bortezomib (=21) or placebo (=23). The 0.5-ml/min per 1.73 m per year (95% confidence interval, -4.8 to 5.8) difference detected between bortezomib and placebo in eGFR slope (primary end point) was not significant (=0.86). We detected no significant differences between bortezomib- and placebo-treated groups in median measured GFR at 24 months (33 versus 42 ml/min per 1.73 m; =0.31), 2-year graft survival (81% versus 96%;=0.12), urinary protein concentration, DSA levels, or morphologic or molecular rejection phenotypes in 24-month follow-up biopsy specimens. Bortezomib, however, associated with gastrointestinal and hematologic toxicity. In conclusion, our trial failed to show that bortezomib prevents GFR loss, improves histologic or molecular disease features, or reduces DSA, despite significant toxicity. Our results reinforce the need for systematic trials to dissect the efficiency and safety of new treatments for late ABMR.
The authors conducted a prospective trial to assess the feasibility of real time central molecular assessment of kidney transplant biopsy samples from 10 North American or European centers. Biopsy samples taken 1 day to 34 years posttransplantation were stabilized in RNAlater, sent via courier overnight at ambient temperature to the central laboratory, and processed (29 h workflow) using microarrays to assess T cell- and antibody-mediated rejection (TCMR and ABMR, respectively). Of 538 biopsy samples submitted, 519 (96%) were sufficient for microarray analysis (average length, 3 mm). Automated reports were generated without knowledge of histology and HLA antibody, with diagnoses assigned based on Molecular Microscope Diagnostic System (MMDx) classifier algorithms and signed out by one observer. Agreement between MMDx and histology (balanced accuracy) was 77% for TCMR, 77% for ABMR, and 76% for no rejection. A classification tree derived to provide automated sign-outs predicted the observer sign-outs with >90% accuracy. In 451 biopsy samples where feedback was obtained, clinicians indicated that MMDx more frequently agreed with clinical judgment (87%) than did histology (80%) (p = 0.0042). In 81% of feedback forms, clinicians reported that MMDx increased confidence in management compared with conventional assessment alone. The authors conclude that real time central molecular assessment is feasible and offers a useful new dimension in biopsy interpretation. ClinicalTrials.gov NCT#01299168.
BackgroundLate antibody-mediated rejection (ABMR) is a leading cause of transplant failure. Blocking IL-6 has been proposed as a promising therapeutic strategy.MethodsWe performed a phase 2 randomized pilot trial to evaluate the safety (primary endpoint) and efficacy (secondary endpoint analysis) of the anti–IL-6 antibody clazakizumab in late ABMR. The trial included 20 kidney transplant recipients with donor-specific, antibody-positive ABMR ≥365 days post-transplantation. Patients were randomized 1:1 to receive 25 mg clazakizumab or placebo (4-weekly subcutaneous injections) for 12 weeks (part A), followed by a 40-week open-label extension (part B), during which time all participants received clazakizumab.ResultsFive (25%) patients under active treatment developed serious infectious events, and two (10%) developed diverticular disease complications, leading to trial withdrawal. Those receiving clazakizumab displayed significantly decreased donor-specific antibodies and, on prolonged treatment, modulated rejection-related gene-expression patterns. In 18 patients, allograft biopsies after 51 weeks revealed a negative molecular ABMR score in seven (38.9%), disappearance of capillary C4d deposits in five (27.8%), and resolution of morphologic ABMR activity in four (22.2%). Although proteinuria remained stable, the mean eGFR decline during part A was slower with clazakizumab compared with placebo (−0.96; 95% confidence interval [95% CI], −1.96 to 0.03 versus −2.43; 95% CI, −3.40 to −1.46 ml/min per 1.73 m2 per month, respectively, P=0.04). During part B, the slope of eGFR decline for patients who were switched from placebo to clazakizumab improved and no longer differed significantly from patients initially allocated to clazakizumab.ConclusionsAlthough safety data indicate the need for careful patient selection and monitoring, our preliminary efficacy results suggest a potentially beneficial effect of clazakizumab on ABMR activity and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.