Synthesis, characterization and anti-cancer studies of Mn(II), Cu(II), Zn(II) and Pt(II) dithiocarbamate complexes -crystal structures of the Cu(II) and Pt (II) complexes
In this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FTIR. The swelling capacity of the hydrogels in both distilled and tap water as well as their water retention capacity in sandy soil were evaluated. The hydrogels had good swelling capacity with maximum swelling ratio of 17.2 g/g and 15.6 g/g for SRF1 and SRF2 in distilled, and 14.4 g/g and 15.2 g/g in tap water, respectively. The water retention capacity of the hydrogels in sandy soil exhibited higher water retention when compared with soil without the (SRFs). The soil with the hydrogels was found to have higher water retention than the soil without the hydrogels. The slow-release profile of the hydrogels was also evaluated. The result suggested that the prepared fertilizer hydrogels has a good controlled release capacity. The blended paper component in SRF2 was observed to aid effective release of urea, with about 87.01% release in soil at 44 days compared to the pure urea which was about 97% release within 4 days. The addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed Schott’s second order model. The release kinetics of urea in water was best described by Kormeye Peppas, suggesting urea release to be by diffusion via the pores and channels of the SRF, which can be controlled by changing the swelling of the SRF. However, the release mechanism in soil is best described by first order kinetic model, suggesting that the release rate in soil is depended on concentration and probably on diffusion rate via the pores and channels of the SRF.
Cu(II) and Zn(II) morpholinyldithiocarbamato complexes, formulated as [Cu(MphDTC)2] and [Zn(μ-MphDTC)2(MphDTC)2], where MphDTC is morpholinyldithiocarbamate were synthesized and characterized by elemental analysis, spectroscopic techniques and single-crystal X-ray crystallography. The molecular structure of the Cu(II) complex revealed a mononuclear compound in which the Cu(II) ion was bonded to two morpholinyl dithiocarbamate ligands to form a four-coordinate distorted square planar geometry. The molecular structure of the Zn(II) complex was revealed to be dinuclear, and each metal ion was bonded to two morpholinyl dithiocarbamate bidentate anions, one acting as chelating ligand, the other as a bridge between the two Zn(II) ions. The anticancer activity of the morpholinyldithiocarbamate ligand, Cu(II) and Zn(II) complexes were evaluated against renal (TK10), melanoma (UACC62) and breast (MCF7) cancer cells by a Sulforhodamine B (SRB) assay. Morpholinyldithiocarbamate was more active than the standard drug parthenolide against renal and breast cancer cell lines, and [Zn(μ-MphDTC)2(MphDTC)2] was the most active complex against breast cancer. The copper(II) complex had a comparable activity with the standard against renal and breast cancer cell lines but showed an enhanced potency against melanoma when compared to parthenolide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.