A new sensor was developed for the analysis of phenolic compounds by coating the surface of a glassy carbon electrode (GCE) with rhodium nanoparticles stabilized in 3-(1-tetradecyl-3-imidazolium) propanesulfonate (ImS3-14), a zwitterionic surfactant. The modifier was found to lower the electron transfer resistance by enhancing the electrical conductivity on the electrode surface. Some phenolic compounds were tested to determine the increase in the electroanalytical response when employing the proposed sensor in comparison to the bare GCE. p-Coumaric acid showed the greatest peak enlargement and, thus, it was selected as the target analyte. Chronocoulometry studies indicated that the increase in the peak is due to the adsorption of the p-coumaric acid on the sensor surface. The optimized analysis conditions were obtained in acetate buffer pH 4.0 employing differential pulse voltammetry, which provided a limit of detection of 472 nmol/L. The recoveries ranged from 98.3% to 104.4%, indicating satisfactory accuracy for the proposed method. The sensor exhibited good repeatability and reproducibility (both intraday and interday) and was applied successfully in the determination of p-coumaric acid in a cellulosic matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.