Constructing scientifically sound samples of hard-to-reach populations, also known as hidden populations, is a challenge for many research projects. Traditional sample survey methods, such as random sampling from telephone or mailing lists, can yield low numbers of eligible respondents while non-probability sampling introduces unknown biases. The authors describe a venue-based application of time-space sampling (TSS) that addresses the challenges of accessing hard-to-reach populations. The method entails identifying days and times when the target population gathers at specific venues, constructing a sampling frame of venue, day-time units (VDTs), randomly selecting and visiting VDTs (the primary sampling units), and systematically intercepting and collecting information from consenting members of the target population. This allows researchers to construct a sample with known properties, make statistical inference to the larger population of venue visitors, and theorize about the introduction of biases that may limit generalization of results to the target population. The authors describe their use of TSS in the ongoing Community Intervention Trial for Youth (CITY) project to generate a systematic sample of young men who have sex with men. The project is an ongoing community level HIV prevention intervention trial funded by the Centers for Disease Control and Prevention. The TSS method is reproducible and can be adapted to hard-to-reach populations in other situations, environments, and cultures.
SummaryBackgroundThe phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings.MethodsWe compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5–17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2–10 year olds (PfPR2–10; range 3–65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2–10 per dose.FindingsIn regions with a PfPR2–10 of 10–65%, RTS,S/AS01 is predicted to avert a median of 93 940 (range 20 490–126 540) clinical cases and 394 (127–708) deaths for the three-dose schedule, or 116 480 (31 450–160 410) clinical cases and 484 (189–859) deaths for the four-dose schedule, per 100 000 fully vaccinated children. A positive impact is also predicted at a PfPR2–10 of 5–10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2–10 of 10–65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18–211) per clinical case averted and $80 (44–279) per DALY averted for the three-dose schedule, and of $25 (16–222) and $87 (48–244), respectively, for the four-dose schedule. Higher ICERs were estimated at low PfPR2–10 levels.InterpretationWe predict a significant public health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across a wide range of settings. Decisions about implementation will need to consider levels of malaria burden, the cost-effectiveness and coverage of other malaria interventions, health priorities, financing, and the capacity of the health system to deliver the vaccine.FundingPATH Malaria Vaccine Initiative; Bill & Melinda Gates Foundation; Global Good Fund; Medical Research Council; UK Department for International Development; GAVI, the Vaccine Alliance; WHO.
Summary Background Enterotoxigenic Escherichia coli (ETEC) and shigella are two major pathogens that cause moderate-to-severe diarrhoea in children younger than 5 years. Diarrhoea is associated with an increased risk of stunting, which puts children at risk of death due to other infectious diseases. Methods We modelled ETEC-related and shigella-related mortality and the effect of moderate-to-severe diarrhoea episodes to determine the number of children with stunting due to these infections in 79 low-income and lower middle-income countries. We applied population attributable risk for increased number of deaths due to other infectious diseases in children who are stunted. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings In children younger than 5 years, we estimate 196 million (95% UI 135–269) episodes of ETEC and shigella diarrhoea occur annually, resulting in 3·5 million (0·8–5·4) cases of moderate-to-severe stunting and 44 400 (29 400–59 800) total ETEC deaths and 63 100 (44 000–81 900) total shigella deaths in 2015. Additional infectious disease mortality due to stunting resulted in increases of 24% (8–34; for ETEC) and 28% (10–39; for shigella) over direct deaths due to diarrhoeal episodes. The distribution of mortality and morbidity varied geographically, with African Region and Eastern Mediterranean Region countries bearing the greatest burden. Interpretation The expanded effects of non-fatal ETEC and shigella-related diarrhoeal episodes can have lasting consequences. Prevention of these infections could reduce the risk of direct death and stunting and deaths due to other infectious diseases. Understanding the countries and populations with the highest disease risk helps to target interventions for the most vulnerable populations. Funding The Bill & Melinda Gates Foundation.
Diarrhoeal disease attributable to enterotoxigenic Escherichia coli (ETEC) causes substantial morbidity and mortality predominantly in paediatric populations in low- and middle-income countries. In addition to acute illness, there is an increasing appreciation of the long-term consequences of enteric infections, including ETEC, on childhood growth and development. Provision of potable water and sanitation and appropriate clinical care for acute illness are critical to reduce the ETEC burden. However, these interventions are not always practical and may not achieve equitable and sustainable coverage. Vaccination may be the most cost-effective and equitable means of primary prevention; however, additional data are needed to accelerate the investment and guide the decision-making process for ETEC vaccines. First, to understand and quantify the ETEC disease burden, additional data are needed on the association between ETEC infection and physical and cognitive stunting as well as delayed educational attainment. Furthermore, the role of inappropriate or inadequate antibiotic treatment of ETEC-attributable diarrhoea may contribute to the development of antimicrobial resistance (AMR) and needs further elucidation. An ETEC vaccine that mitigates acute diarrhoeal illness and minimizes the longer-term disease manifestations could have significant public health impact and be a cost-effective countermeasure. Herein we review the ETEC vaccine pipeline, led by candidates compatible with the general parameters of the Preferred Product Characteristics (PPC) recently developed by the World Health Organization. Additionally, we have developed an ETEC Vaccine Development Strategy to provide a framework to underpin priority activities for researchers, funders and vaccine manufacturers, with the goal of addressing globally unmet data needs in the areas of research, product development, and policy, as well as commercialization and delivery. The strategy also aims to guide prioritization and co-ordination of the priority activities needed to minimize the timeline to licensure and use of ETEC vaccines, especially in in low- and middle-income countries, where they are most urgently needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.