Oxidative stress-mediated cancer progression depends on exposure to reactive oxygen species (ROS) in the extracellular matrix (ECM). To study the impact of ROS levels on preinvasive breast cancer cells as a function of ECM characteristics, we created a gradient-on-a-chip in which H 2 O 2 progressively mixes with the cell culture medium within connected microchannels and diffuses upward into the ECM of the open cell culture window. The device utilizes a paperbased microfluidic bifurcating mixer insert to prevent leakage and favor an even fluid distribution. The gradient was confirmed by measuring H 2 O 2 catalyzed into oxygen, and increasing oxidative DNA damage and protective (AOP2) response were recorded in 2D and ECM-based 3D cell cultures. Interestingly, the impact of ROS on nuclear shape and size (annunciating phenotypical changes) was governed by the stiffness of the collagen I matrix, suggesting the existence of thresholds for the phenotypic response to microenvironmental chemical exposure depending on ECM conditions.
The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.