This paper addresses the problem of designing urban road networks in a multi-objective decision making framework. Given a base network with only two-way links, and the candidate lane addition and link construction projects, the problem is to find the optimal combination of one-way and two-way links, the optimal selection of network capacity expansion projects, and the optimal lane allocations on two-way links to optimize the reserve capacity of the network, and two new travel time related performance measures. The problem is considered in two variations; in the first scenario, two-way links may have different numbers of lanes in each direction and in the second scenario, two-way links must have equal number of lanes in each direction. The proposed variations are formulated as mixed-integer programming problems with equilibrium constraints. A hybrid genetic algorithm, an evolutionary simulated annealing, and a hybrid artificial bee colony algorithm are proposed to solve these two new problems. A new measure is also proposed to evaluate the effectiveness of the three algorithms. Computational results for both problems are presented.
This paper aims to model and investigate the discrete urban road network design problem, using a multi-objective time-dependent decision-making approach. Given a base network made up with two-way links, candidate link expansion projects, and candidate link construction projects, the problem determines the optimal combination of one-way and two-way links, the optimal selection of capacity expansion projects, and the optimal lane allocations on two-way links over a dual time scale. The problem considers both the total travel time and the total CO emissions as the two objective function measures. The problem is modelled using a time-dependent approach that considers a planning horizon of multiple years and both morning and evening peaks. Under this approach, the model allows determining the sequence of link construction, the expansion projects over a predetermined planning horizon, the configuration of street orientations, and the lane allocations for morning and evening peaks in each year of the planning horizon. This model is formulated as a mixed-integer programming problem with mathematical equilibrium constraints. In this regard, two multi-objective metaheuristics, including a modified nondominated sorting genetic algorithm (NSGA-II) and a multi-objective B-cell algorithm, are proposed to solve the above-mentioned problem. Computational results for various test networks are also presented in this paper.
This paper models a natural gas supply and demand system using a system dynamics approach to determine whether current policies for a given country will sustain its long-term natural gas demand. The dynamic effects of natural gas supply and demand, as well as the relationships between the oil and gas sectors are modeled. Of particular interest is to investigate whether the natural gas supply and demand system in a country can provide sufficient capital for future natural gas resource development. The model is illustrated on the case study of Iran, and it is shown that continuing the current trends will result in a gap between natural gas domestic demand and supply, with no natural gas remaining for export. Some policies regarding the increase in domestic natural gas price and more natural gas export are proposed, and their effectiveness in filling the supply and demand gap is examined in three scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.